
Detecting Coordination Failures by Observing Groups: A Formal Approach

Michael Lindner and Meir Kalech and Gal A. Kaminka
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel

{kalechm, galk}@cs.biu.ac.il

Abstract

Agent-coordination on specific aspects is a key re-
quirement for many teams. These relations are,
however, often severed as a result of intermittent
failure of sensor readings, communication failures,
etc. Detection of such failures, based upon agent-
observation, is of prime importance. Though dif-
ferent solutions have been presented thus far, none
has presented a comprehensive resolution to this
problem. Our research has produced a compact
matrix-based representation of pre-defined agent-
coordination that is used with a matrix-based repre-
sentation of a plan-recognition process. The result
is a novel solution that is both generic and efficient
for large-scale teams. Additionally, it facilitates
easy design of coordination requirements, modu-
larity and reusing of existing systems.

1 Introduction
The autonomous agents within multi-agent systems interact
and coordinate between themselves in order to achieve their
goals. The increased deployment of robotic and agent teams
in complex dynamic settings, has in turn, led to an increas-
ing need for coordination-failure responses[Kaminka and
Tambe, 2000; Parker, 1998] Detection of coordination fail-
ures is essential for later recovery process during which co-
operation is reinstated (e.g., by negotiations[Kraus et al.,
1998]). The coordination-failure detection does not indicate
whether the group is achieving its goals but only if agent-
coordination exists.

The following examples demonstrates the importance of
this process[Kaminka and Bowling, 2002]. A helicopter
squadron is sent to strike mission. According to the flight
plan, at certain coordinates, one Helicopter is to proceed and
get visual target confirmation, while the rest of the squadron
remains hidden. Once the target is confirmed the lead Heli-
copter is to signal the squadron to commence their attack. Co-
ordination difficulties, in this example, may lead to the failure
of the mission. Thus, if an additional Helicopter continues
flying, it may jeopardize the whole mission. If, on the other
hand, the errant pilot is able to recognize his error on time,
the mission might be saved.

The systematic detection method we have devised infers

the agents internal state through observation of the agent. Pre-
vious coordination-failure detection methods have assumed
that the agents internal state is known[Klein and Dellaro-
cas, 1999]. These methods have ignored scale-up challenges.
Some have take a certain amount of uncertainty into account,
and were therefore only able to capture specific coordina-
tion failures, such as disagreements over a selected joint plan
[Kaminka and Tambe, 2000; Kaminka and Bowling, 2002].
None of the methods introduced so far has taken a systematic
approach to addressing this challenge (see Section 2).

We suggest a new compact way to represent (1) pre-defined
agent coordination model and (2) the agents states as inferred
from their observed actions. Accounting for both the coor-
dination model and the observation, we suggest an efficient
failure-detection algorithm. The algorithm does, in many
cases, reduce the complexity of detection in large-scale teams
from exponential to polynomial.

The paper is organized as follows. Section 2 presents re-
lated work. Section 3 motivates the research. Then, in section
4, we present our new notation to the coordination-definition
and observation modeling, and give the fault detection algo-
rithm. An extension of the former for complex systems is
presented in section 5. At last, section 6 summarizes.
2 Related Work
[Horling and Lesser, 1999; Horlinget al., 2001] presented
a framework for diagnosing failures in multi-agent systems,
based on agent information-sharing, and a diagnosis causal
model. However, this work addresses neither the scale-up
issues, nor the construction of the causal model that enables
it to detect and diagnose failures.

A different approach was presented by[Klein and Del-
larocas, 1999] according to which, each agent is paired with
a sentinel. Sentinels report agent-activities to a failure-
detection system that utilizes a pre-analyzed coordination
failure database. This method, the failure-model approach,
dictates that all possible failures be analyzed in advance. No
allowance is given to different agent-action interpretation,
e.g., through plan recognition.

[Poutakidiset al., 2002] provides a method for tracking
the progress of conversations using interaction protocols, and
detection of some failures, using a Petri-net representation
of the interaction protocols that are expected to take place
(rather than the expected failures as in the techniques dis-
cussed above). When protocols are matched against obser-



vations of messages, errors are detected. However, the repre-
sentation has been shown to scale poorly with the number of
agents[Gutnik and Kaminka, 2005].

[Kaminka and Tambe, 2000; Browninget al., 2002] use a
behavior-based approach. In a system consisting ofn agents,
each withm possible states, there existO(mn) possible joint
states. In this approach, the designer indicates the ideal state
of coordination, by specifying the desired joint states, a sub-
set of all possible joint states. The system observes the agents
during run-time, and uses plan-recognition in order to infer
their actual joint state. It then verifies that the actual joint
state is indeed a desired one.[Kaminka and Bowling, 2002]
present a scalable method for such assessment. Unfortu-
nately their method only enables detection of system failures
in cases where the desired joint states are in perfect agree-
ment.

This paper presents a systematic approach to detect-
ing coordination failures based on observation and plan-
recognition. It utilizes a model-based approach, wherein the
designer only specifies desired joint states, rather than all pos-
sible states of failure. The approach also takes accounts for
the inherent uncertainty that exists when anothers state is in-
ferred, e.g., due to ambiguity in plan recognition. We show
that we can compactly represent joint states usingn∗m matri-
ces, and thus reduce the potentialO(mn) check to aO(n ·m)
check in many cases.

3 Motivation
As we mentioned above, the main weakness of earlier meth-
ods, was their exponential complexity[Browning et al.,
2002]. For example, consider a management system for a
shop consisting of the following 6-agent crew: Annie the
manager, Benny the cashier, two sellers — Canny and Danny,
Ernie the storekeeper and a guard, Fanny. Agents may be in
one of eight possible states: dealing with customers, han-
dling equipment, taking a break etc. The agents may be
placed in various pre-defined combinations, considering their
states. For instance, the following combination is legitimate:
{Annie: watch, Benny: sell, Canny: dealing, Danny: break,
Ernie: equip, Fanny: guard}. However, the following com-
bination is illegitimate:{Annie: watch, Benny: sell, Canny:
negotiate, Danny: break, Ernie: sell, Fanny: guard}, since
Ernie is forbidden to sell while he has no substitute. Thus,
since any agent may be in any state, there are as many as86

(262,144) possible combinations in this small shop. Any ad-
ditional state or agent increases the complexity exponentially.

At run-time, the system is provided with a simple plan
recognition capability that defines for each observed action,
what states the agent may occupy. For example, if Danny is
observed talking on the phone, he is either negotiation with
a customer (statenegotiate), or making a private call during
his break time (statebreak). However, we are assured that he
is not guarding at the moment. The system uses this mecha-
nism to infer, for each agent, its possible states. The system
then combines these individual states and indicates all pos-
sible joint states the agent may be in. These are then com-
pared with the desired joint states list. The system can then
determine whether a failure exists (i.e., none of the inferred
possible states is a desirable state).

Nevertheless, the possibility of multiple joint states
presents us with the difficulty of deciding whether a failure
actually occurred since the list of inferred states contains de-
sired and undesired states (i.e., ambiguous conclusions). This
problem was addressed by[Kaminka and Tambe, 2000].

A key challenge involves the representation of potentially
exponential inferred (and desired) joint states in a way that re-
duces matching run-time. Since the number of possible joint
states in exponential, a simplistic approach would take expo-
nential run-time.

Our research offers means of avoiding the problem of ex-
ponential number of combinations. This is done by encap-
sulating different combinations into simple, relatively small
structures, calledextended-combinations, ore-combs. For ex-
ample, suppose that our coordination requires that when the
guard, Fanny, is taking a break or talking to the manager, the
storekeeper must replace her, and the sellers are allowed to
deal with equipment at this situation. Suppose too, that simi-
lar logic is applied to the other agent, such that the following
is legitimate: Fannys state is break or inner-talk, Ernies state
is guard, Canny and Danny are either equipment, negotiate,
sell or break, Bennys state is sell or break and Annie is ei-
ther watching or inner-talking. The example defines 128 joint-
state combinations. However, rather than enumerating them,
we defined them implicitly in the description above. Using
this kind of definition provide two significant features. First,
the design and definition of desired coordination becomes
much easier. Not only does it actually involve smaller struc-
tures, but it is also very logical and straight-forward. Second,
and more importantly: the complexity no longer depends in
the agents and states in an exponential manner.

4 A Matrix Representation Approach
In order to contextualize our solution, we will present the for-
malism of observation-based failure-detection[Browning et
al., 2002].

Let A be a set ofn agents, A = {a1, a2, . . ., an}, where
each agent may be found at any time in one ofm possible
states, S = {s1, s2, . . ., sm}. At any given moment, the
agents are at a givenjoint state, that is, each one of them
is found in a specific state. Each joint state (which is also
referred as acombination) may be represented as ann-tuple
of states,〈sk1 , sk2 , . . . , skn〉, ski ∈ S, whereski represents
the state of agentai. A systemis defined by agents, states, and
the allowed combinations. These combinations, defined by
the program designer, signify the states in which each agent
is allowed to be.

Since the desired coordination is defined as a collection of
combinations, the complexity of space needed is bound by
the maximum number of combinations. Since each of then
agents may be inm possible states, the number of combina-
tions is actually bounded byO(mn). Although this calcula-
tion represents a worst case scenario, the average case still
increases exponentially as agents are added.

During run-time, the system is provided with the possible
current states of each of the agents. This information is pro-
vided by an observer, who recognizes the agents particular
behavior in every state. Thus, one observation may be inter-
preted as many different states (and vice versa). The possible



states selected by the agents, resembling the allowed combi-
nations, are provided as a set of combinations.

Determining whether a failure has occurred is done by ana-
lyzing the desired coordination joint-states, and the hypothe-
sized current states, and testing whether at least one joint state
appears in both sets (this is an optimistic policy[Kaminka and
Tambe, 2000]). Hence, the time complexity is equivalent to
the space complexity. This is unacceptable when dealing with
large systems. Using this approach, even a system consisting
of a few dozens of agents, with a small number of states, will
be difficult to monitor.

We present a new representation of the allowed combina-
tions, calledextended combinations, or e-combs. An e-comb
is a Boolean matrix of ordern × m. Each row of the ma-
trix is assigned to one agent and each column is assigned to
one state. The allowed combinations are defined by the 1 el-
ements in the matrix. That is, e-combC defines all the com-
binations of the form:

a1 : sk1 , a2 : sk2 , . . . , an : skn | Ci,ki = 1

Consider the example given in Section 3. Assume that the
agents are numbered 1 to 6, according to alphabetical order
(Annie is 1, Benny is 2 etc.). States are numbered 1 to 8 in the
following order: break, idle, negotiate, sell, inner-talk, watch,
guard, equipment. The appropriate ecomb would then be

D
6×8

=




s1 s2 s3 s4 s5 s6 s7 s8

a1 0 0 0 0 [1] 1 0 0
a2 [1] 0 0 1 0 0 0 0
a3 [1] 0 1 1 0 0 0 1
a4 [1] 0 1 1 0 0 0 1
a5 0 0 0 0 0 0 [1] 0
a6 [1] 0 0 0 1 0 0 0




This e-comb represents all the combinations in
which agent ai is found in some statesj , such that
di,j = 1. For example, a legal combination is
{a1 : s5, a2 : s1, a3 : s1, a4 : s1, a5 : s7, a8 : s1} (denoted by
square brackets).

Let us now address the observations. In our system, aside
for the logical states of agents, which are the statessk ∈ S,
there is also a definition of the variousobservable actionsthe
agents may take,B = {b1, b2, . . . , b`}. Returning to the shop
example once again, we will remember that while we had 8
states, we also had 9 actions (` = 9): talk (b1), phone (b2),
stand (b3), walk (b4), counter (b5), put (b6), get (b7), carry (b8)
and other (b9). Every agent exists in one of these actions any
given moment. However, this is not a one-to-one mapping.
For example, if an agent is observed to be carrying a product
(i.e., taking actionb8), it may do that either while making
order in the shop (i.e., found in states8 – equipment), or it
may carry it to a customer during a sell (s4) state. In the
opposite direction, during a sell (s4) the agent may also take
the action of sitting near the counter (b5) or getting a product
from the shelf (b7).

We represent the relation between the agents state and its
actions using a matrix, to abstract the plan recognition pro-
cess. The matrixI (stands forInterpretation) is a Boolean
matrix of orderm× `. In this matrix, the value of an element
Ij,k is ‘1’ if once the agent’s state issj it may take actionbk;
in other words, if the agent is observed to be actingbk, we
may interpret it as being in (possibly) statesj . Note that this
says nothing about the plan recognition algorithm itself, other

than that it requires it to be able to support the interpretation
of what states are possible, given observed actions. In our ex-
ample, this is how the interpretation matrix is defined for the
shop system:

I
8×9

=




b1 b2 b3 b4 b5 b6 b7 b8 b9

s1 1 1 1 0 0 0 0 0 1
s2 0 0 1 0 0 0 0 0 0
s3 1 1 0 0 0 0 0 0 0
s4 0 0 0 0 1 0 1 1 0
s5 1 0 0 0 0 0 0 0 0
s6 1 0 1 1 0 0 0 0 0
s7 0 0 1 1 0 0 0 0 0
s8 0 0 0 1 0 1 1 1 0




Row 4 of this matrix, for example, shows that the possible ac-
tions in states4 (sell) areb5 (counter),b7 (get) andb8 (carry).
Column 8 shows that if an agent is being observed as acting
b8 (carry), it may be in one of the statess4 (sell) ors8 (equip-
ment).

During run-time, observation of agent action is conducted
by an additional system with relevant sensors. At any given
time, an agent is observed performing exactly one action. We
represent it as a Boolean matrixW of ordern×` (n represents
the agents’ size and̀ the actions’ size), calledobservation
matrix. In this matrix, there is exactly one element which
is ‘1’ in each row. Thus, ifwi,k is 1, it means that agent
ai is observed as actingbk. For example, in the following
observation matrix at timet,

W
6×9
t =




b1 b2 b3 b4 b5 b6 b7 b8 b9

a1 0 0 1 0 0 0 0 0 0
a2 0 0 1 0 0 0 0 0 0
a3 0 1 0 0 0 0 0 0 0
a4 0 0 0 0 0 0 1 0 0
a5 0 0 0 0 0 0 0 1 0
a6 0 0 0 1 0 0 0 0 0




Annie (a1) was observed standing (b3), as was Benny (a2),
Canny (a3) is on the phone (b2) etc.

The possible states in which each agent is found at that
moment (t), then, are calculated using the formula:

Ωt = Wt · IT

whereΩt is ann × m Boolean matrix (that is, an e-comb),
in which each elementj in row i represents whether it is pos-
sible that agentai is now in statesj (‘1’ entry) or not (‘0’
entry). Note that each elementΩti,j is the sum of multiply-
ing each elementk in row i of Wt by elementk in columnj
of IT . This multiplication, of course, is ‘1’ iff both of them
are ‘1’. Since each row inWt has exactly one element which
is ‘1’, the value of each element inΩt will be at most ‘1’.

In our previous example:

Ω
6×8
t = Wt · I

T
=




s1 s2 s3 s4 s5 s6 s7 s8

a1 1 1 0 0 0 1 1 0
a2 1 1 0 0 0 1 1 0
a3 1 0 1 0 0 0 0 0
a4 0 0 0 1 0 0 0 1
a5 0 0 0 1 0 0 0 1
a6 0 0 0 0 0 1 1 1




For example, our observation may lead us to conclude that
Annies state is eithers1 or s2 or s6 or s7.

Using these matrices, we can now explain the failure de-
tection algorithm. Failure is defined as a situation wherein
none of an agents possible assigned state (according toΩt)
appear on the ‘allowed combination’ list, designated asD
(the desired coordination e-comb). In order to examine possi-
ble matches we will operate a logical and betweenD andΩt



in an element-by-element process, to get the results matrix,
Rn×m, ri,j = di,j ∧ωti,j . Being a Booleann×m matrix,R
itself is in fact an e-comb.

R represents all the agents-assigned combinations that sat-
isfy D according to observation. E-combR represents all the
combinations in which agentai is found in one of the states
sj that match ‘1’ element in rowRi. Thus, if in each rowi
in R there is at least one ‘1’ element, it implies that at least
one combination exists. In this case, we may assume that the
agents will be found in one of those joint states. If, However,
R defines no combination, then the assigned agents states are
definitely forbidden. In this case, a failure alert is warranted.

If at least one combination is found,R must include at least
one assignment for each agent. In other words: at least one 1
element on each row. If an all-zero row exists, it indicates
a no-assignment situation inR, in which caseR does not
define any combination. This operation takes onlyO(nm)
operations (counting the ‘1’s form elements on each ofR’s
n rows). Returning to the shop example, matrixR will be
the result of an element-by-element ‘and’ operation between
the desired coordinationD and the interpretation e-combΩt,
which were both presented earlier. This provides the matrix

Rt = Ωt ∧Dt =




s1 s2 s3 s4 s5 s6 s7 s8

a1 0 0 0 0 0 1 0 0
a2 1 0 0 0 0 0 0 0
a3 1 0 1 0 0 0 0 0
a4 0 0 0 1 0 0 0 1
a5 0 0 0 0 0 0 0 0
a6 0 0 0 0 0 0 0 0




.

in this e-comb, the two bottom lines, representing Ernie and
Fanny, are all-zero. No desired combination can explain their
actions. A failure has been detected.

5 Complex Coordination
One e-comb will usually not suffice for a full desired coor-
dination definition. Thus, e-combD that we introduced ear-
lier, only partially defines the allowed combinations in the
shop desired coordination. It deals only with Ernie replacing
Fanny in guard duty.

However, we cannot add another state toD, by just chang-
ing d6,7 (Fanny:guard) from 0 to 1. This would allow unde-
sired combinations, such as Ernie and Fanny guarding simul-
taneously. Hence, we much provide a general notation that
allows the definition of multiple types of coordination. The
idea is to extend the e-comb approach so that it consists of
more than one e-comb, without becoming exponentially com-
plex.

5.1 E-combs Operators
The most important operator used to join a few e-combs is
the ‘or’, which is notated as ‘t ’. Defining two sets of co-
ordinationD1 t D2, means that the set of allowed combi-
nations in the system is the union of all the combinations
defined byD1 and all the combinations defined byD2. As
long asΩt satisfies the ‘none all-zero row’ property withei-
ther D1 or D2 (or both, of course), there is no failure. This
operator may be extended to longer expressions, of the kind
D1 t D2 t · · · t Dp.

We call this extended structure of combined e-combs us-
ing operators — arule. Testing an interpretation e-combΩt

against a ruleR = D1 t D2 t · · · t Dp is simple. One

must perform the ‘all-zero’ test presented earlier for each
of the p e-combs. That is, for eachDk in R, calculating
the result matrixRk by logically ‘and’ingΩt with Dk in an
element-by-element fashion, and then check whetherRk has
an all-zero row or not. Due to the nature of the operator ‘t ’,
it is enough to verify that at least one suchRk has no all-zero
row for assuming the agents are coordinated. Only if in each
of the result matricesRk there is an all-zero row, it indicates
a coordination error; in this case, we are sure that the agents
are not found in any allowed combination. Note that the com-
plexity of such a simple rule, that involves no other operators
than ‘or’, is O(nmp), wherep is the number of e-combs in
the rule.

There may be cases in which use oft will be less effi-
cient, or more difficult for the designer. Thus, we present the
second basic operator, ‘and’, which is notated by a ‘u ’. The
expressionD1 u D2 represents all the combinations that are
found in the intersection of those that are defined byD1 and
those defined byD2. In other words, the ‘non all-zero row’
property forΩt must hold forbothD1 andD2. In fact, one
might notice that any expression of the formD1 u D2, may
be reduced to an equivalent e-comb, that represents exactly
the same set of combinations. This is the e-comb that is the
result of a logical-and in an element-by-element fashion be-
tweenD1 andD2.

In order to motivate the and operator, let us return to the
shop example. Suppose that our shop, and an additional shop
are running successfully and we would like the two shops to
cooperate. The basic coordination rules of both shops are left
untouched. However, now that two mangers are available, we
add a constraint saying that one must always supervise the
workers. At least one of the two managers must be watching
(s6) at any given time. Using previous methods, a new model
would have required. E-combs with only an or operator might
be easier, but will still require redesigning. This is due to
the fact that the current system allows the manager to either
watch or talk with its employees. Using the and operator,
substantially simplifies our task.

Suppose that the shops useR1 andR2 as coordination
rules. The first task would be to assemble all agents into one
system. Instead of using e-combs of order6×8 we use12×8
e-combs, as described below. In order to avoid collision in
agent names, we first renumber the agents of shop no. 2 as
a7 to a12. We now have 12 agents,a1 to a12. Then, we must
update definitions from both shops from a6×8 domain to the
new unified one. For this purpose, we expand each e-comb of
R1 with six new rows, 7 to 18, which are all filled with 1s.
This ensures that the desired coordination of the first shop is
left untouched — since all rows, except for the first six, are
defined as all ones. The other shop agents state is of no con-
sequence, only the first 6 rows (agents) are meaningful. The
same is done for the second shop rule,R2. In this case, we
will expand the original e-combs in such a way that they will
become rows 7 to 12 of the new e-combs, and fill rows 1–6
with all ones. Now, we have both shops running on the same
system, each with its original rules. The only thing left is
to add the management restriction. This may be achieved by
allowing one of following cases:



1. When manager 1,a1, is watching the shop (s6), the other
manager,a7, may either watch (s6) or talk with its em-
ployees (s5),

2. When manager 2,a7, is watching the shop (s6), the other
manager,a1, may either watch (s6) or talk with its em-
ployees (s5).

This is expressed by two e-combs; the first is

M12×8
1 =




s1 s2 s3 s4 s5 s6 s7 s8

a1 0 0 0 0 0 1 0 0
a2 1 1 1 1 1 1 1 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a6 1 1 1 1 1 1 1 1
a7 0 0 0 0 1 1 0 0
a8 1 1 1 1 1 1 1 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a12 1 1 1 1 1 1 1 1




.

We buildM2 in a similar way. Then, we define the ‘manager
rule’ to beRM = M1 tM2. Finally, we define the rule

Rcooperative= R1 u R2 u RM .

The next section presents an algorithm for calculating of this
kind of rules.

5.2 Computing Complex Rules
This section presents the general algorithm that tests a coor-
dination rule which includes or and and operators against a
given e-comb interpretation. The algorithm uses atree repre-
sentationof the rule. The leaves are the rules e-combs, and
the inner nodes are the operators. The trees depth is then re-
duces until it consists of a simple or expression that can be
easily calculated.

The first phase of the algorithm deals with the logical op-
erators that construct the rule. The tree reduction is accom-
plished throughimages. An image represents, for each node
in the tree, the possible combinations that are defined by the
sub-tree whose this node is its root. The image is, in fact, one
or more encapsulated e-combs. However, an image logically
represents one node. In this way, we work our way up from
the leaf nodes. The sub-tree of every node is replaced with an
equivalent image.

The translation of a sub-tree is quite simple. It begins, re-
cursively, from the root and runs in DFS until it reaches a
leaf. On its way back, it replaces each node with an im-
age. The manner, in which a node (sub-tree) is translated
into an image, depends on the node-type. Since the sub-tree
replacement is done during the DFS backtracking, the nodes
offspring are already guarantied translation into images.

E-Combs: These are in fact the leaves of the tree; each e-
comb node becomes an image which includes only one
e-comb.

‘Or’ nodes: Each or node is replaced by an image that in-
cludes all the e-combs from the nodes image offspring.

‘And’ nodes: An and node that has a few image offspring
performs according to the distribution law. It becomes
an image that contains all the and combinations between
e-combs from each of the offspring. In other words, if
a node hask image offspring, each consisting ofck dif-
ferent e-combs, then it will be replaced with an image

that includes
∏k

i=1 ck e-combs. Each of those e-combs
is built of a different combination ofk e-combs, which
are logically anded in an element-by-element fashion.

In order to demonstrate, let us refer to the following rule
on some e-combsC1 to C9:

R = C1 t ((C2 t C3) u (C4 t C5)) t C6 t (C7 u C8 u C9)

Its tree form is represented in Fig. 1.

C1 

C7 C9 C8 

C3 C2 C5 C4 

C6 

Figure 1: The Rule Tree forR

The root has four offspring, two of which (the first and the
third) are simple e-combs. The rightmost is an or node with
three simple, e-combs offspring. The second one, is an and
node, with two offspring, themselves sub-trees, each consist-
ing of an or node and two e-combs offspring. We show how
the algorithm reduces the tree, step by step. The first node
is the leftmost node. It is, in fact, just a simple e-comb. It
is therefore replaced by a simple image node that includes
exactly this e-comb.

C7 C9 C8 

C6 C1 

C2,3 C4,5 

Figure 2: Rule Tree Reduction – step 1

C7 C9 C8 

C6 C1 C2*4 C2*5 C3*4 C3*5 

Figure 3: Rule Tree Reduction – step 2

In the next stage, the same thing is done to the next leaf
(the e-combC2) and then to its sibling,C3. Later, their parent
node (of type ‘or’) becomes an image that includes both im-
ages (as a notational shortcut, we use the formC2,3 as a sub-
stitution ofC2, C3). The algorithm then continues the same
process on the next sub-tree, and creates an image consisting
of C4,5 (Figure 2).

Next, we have an ‘and’ node, with two image offspring,
each of which consists of two e-combs. As we saw earlier, the



C6 C7 C1 C2*4 C2*5 C3*4 C3*5 C8 C9 

Figure 4: Rule Tree Reduction – step 3

‘and’ node is replaced by an image that includes all possible
combinations of{C2, C3} and{C4, C5}. These are the com-
binations(C2 u C4), (C2 u C5), (C3 u C4), (C3 u C5), for
short, C2?4, C2?5, C3?4, C3?5 (Figure 3). As was already
mentioned, an e-combs ‘and’ (u ) is in fact identical to an
element-by-element ‘and’. Hence, each of the expressions
Cx?y is in fact one e-comb. During the next stage, the node
of C6 is replaced by an image with only this e-comb. Then
the rightmost ‘or’ node, with three offspring (C7, C8, C9) is
replaced with one image of those three e-combs (Figure 4).
At this stage, we reach the root ‘or’ node, which has four im-
age offspring.

After reducing the whole tree, we are left with one image.
This image includes multiple e-combs. Thus, in fact, it may
be treated as a collection of e-combs that are all combined
by an ‘or’ (‘ t ’) operator. As we noted earlier, a failure is
detected if for all of them, the result of ‘and’ing withΩt pro-
vides an e-comb with an all-zero row.
5.3 Complexity
As we saw in section 4, the complexity of a rule that consists
of or operators only isO(mnp), wherep is the number of
e-combs in the rule. The complexity of a rule that combines
or and and cannot be described by a simple formula, and is
highly related to the structure of the rule. However, gener-
ally, it grows linearly in the number of agents (n) and the
number of possible states (m). The main factor is the com-
plexity of the rule tree. Of course, common sense dictates
that the more agents and states get involved, the greater the
complexity of the rule. However, it does not necessarily grow
exponentially. This is a very important property, since the
complexity of other approaches is exponential in the number
of agents, regardless the structure of the allowed combina-
tions.

6 Summary and Future Work
In this paper we presented a new formal approach to
observation-based fault detection. We defined a new matrix-
based notation—the e-combs—which serves as a general
framework for coordination design and definition in multi
agent systems. At run-time the observer of the multi-agent
system builds a similar matrix of the hypothesized states se-
lected by the agents. Using this representation, we showed an
efficient fault detection algorithm in a space and time com-
plexity that is linear by the number of agents and state. The
space and time needed for this algorithm are mainly depen-
dent in the complexity of the rule—how many e-combs in-
volve and in what kind of relations.

This research is novel in that it presents a solution that is
both general and efficient for large-scale teams. It also eases
the design of coordination requirements and allows modular-
ity and reuse of already existing systems.

In the future we plan to add partial observations capabili-
ties which will find the minimum set of agents that will to-
gether provide the complete information, or at least the best
possible information. Combining this with explicit commu-
nication among agents may result a system that is cheap in
resources, yet very reliable. In addition, at the moment our al-
gorithm assumes that the coordination among the team mem-
bers is defined at the beginning and must be consistent along
the system lifetime. However, real-world multi-agent systems
are dynamic, and the desired coordination may change, so we
plan to extend our algorithm to dynamic coordination.
References
[Browninget al., 2002] Brett Browning, Gal Kaminka, and

Manuela Veloso. Principled monitoring of distributed
agents for detection of coordination failures. InProceed-
ings of Distributed Autonomous Robotic Systems 6, pages
319–328. Springer-Verlag, 2002.

[Gutnik and Kaminka, 2005] G. Gutnik and G. A. Kaminka.
A scalable petri-net representation of interaction protocols
for overheaing. InIn Developments in Agent Communi-
cationLNAI Volume 3396, van Eijk, R.; Huget, M. P. and
Dignum, F. (Eds), Springer-Verlag. In press, 2005.

[Horling and Lesser, 1999] Bryan Horling and Victor Lesser.
Using Diagnosis to Learn Contextual Coordination Rules.
Proceedings of the AAAI-99 Workshop on Reasoning in
Context for AI Applications, pages 70–74, July 1999.

[Horling et al., 2001] Bryan Horling, Brett Benyo, and Vic-
tor Lesser. Using Self-Diagnosis to Adapt Organizational
Structures.Proceedings of the 5th International Confer-
ence on Autonomous Agents, pages 529–536, June 2001.

[Kaminka and Bowling, 2002] Gal A. Kaminka and Michael
Bowling. Towards robust teams with many agents.in Pro-
ceedings of Autonomous Agents and Multi Agent Systems
(AAMAS-02), 2002.

[Kaminka and Tambe, 2000] Gal A. Kaminka and Milind
Tambe. Robust multi-agent teams via socially-attentive
monitoring. Jornal of Artificial Intelligence Research,
12:105–147, 2000.

[Klein and Dellarocas, 1999] Mark Klein and Chris Dellaro-
cas. Exception handling in agent systems.Proceed-
ing of the Third International Conference on Autonomous
Agents, May 1999.

[Krauset al., 1998] Sarit Kraus, Sycara Katia, and Amir
Evenchik. Reaching agreements through argumentation: a
logical model and implementation.Artificial Intelligence,
104(1–2):1–69, 1998.

[Parker, 1998] Lynne E. Parker. ALLIANCE: An archi-
tecture for fault tolerant multirobot cooperation.IEEE
Transactions on Robotics and Automation, 14(2):220–240,
April 1998.

[Poutakidiset al., 2002] D. Poutakidis, L. Padgham, and
M. Winikoff. Debugging multi-agent systems using de-
sign artifacts: The case of interaction protocols.in Pro-
ceedings of Autonomous Agents and Multi Agent Systems
(AAMAS-02), 2002.


