
Diagnosis of Coordination Faults: A Matrix-Based Formulation

Meir Kalech 1 and Michael Lindner 2 and Gal A. Kaminka 2

1School of Engineering and Applied Sciences, Harvard University, MA USAkalech@eecs.harvard.edu
1Computer Science Department, Bar Ilan University, Israellindnerm@gmail.com, galk@cs.biu.ac.il

Abstract
One of the key requirements in many multi-agent
teams is that agents must coordinate on specific as-
pects of their joint task. Unfortunately, this coordi-
nation may fail due to intermittent failures in sen-
sor readings, communication failures, etc. A key
challenge in model-based diagnosis of such coordi-
nation faults is to represent the model coordination
between the agents in a way that allows efficient de-
tection and diagnosis, based on observations of the
agents involved. Previous mechanisms are useful
only for small groups as they represent the coordi-
nation with binary constraints. This paper presents
a model-based diagnosis (MBD) approach to co-
ordination failure in which non-binary constraints
are allowed. This model presents two advantages:
(1) it appears quite frequently when modeling real
problems, (2) it addresses large groups by gathering
multiple coordinations in one constraint. To solve
the diagnosis problem, we propose a matrix-based
approach to represent the basic building blocks of
the MBD formalization. This representation is both
generic and efficient for large-scale teams.

1 Introduction
With increasing deployment of robotic and agent teams in
complex, dynamic settings, there is an increasing need to
also be able to respond to failures that occur in multi-agent
teams[Tambe, 1997; Kaminka and Tambe, 2000; Kalech and
Kaminka, 2006]. One type of failure of particular interest
in multi-agent systems is acoordination fault, where agents
come to disagree on salient aspects of their joint task.

There is thus a particular need to be able to detect and di-
agnose the causes for coordination faults that may occur, in
order to facilitate recovery and reestablishment of collabora-
tion, e.g., by negotiations[Krauset al., 1998]. This type of
diagnosis is calledsocial diagnosis, since it focuses on find-
ing causes for failures to maintain social relationships, i.e.,
coordination failures.

In this paper we focus on a model-based diagnosis ap-
proach for coordination failures. Model-based diagnosis
(MBD) [Reiter, 1987; de Kleer and Williams, 1987] relies on
a model of the diagnosed system, which is utilized to simu-
late the behavior of the system given the operational context

(typically, the system inputs). The resulting simulated behav-
ior (typically, outputs) are compared to the actual behavior to
detect discrepancies indicating failures. The model can then
be used to pinpoint possible failing components within the
system.

Previous work presents model-based diagnosis for coordi-
nation faults[Kalech and Kaminka, 2005; 2006], however, it
models the coordination between every pair of agents as a set
of binary constraints between the agents’ states. Thus, this
representation does not scale well in the group size and in the
number of states.

On the contrary, non-binary constraints appear quite fre-
quently when modeling real problems[Bacchus and van
Beek, 1998]. Such problems could be naturally defined by
non-binary constraints between multiple agents. In addition,
there are domains like RoboCup Rescue[Tambeet al., 2005]
or ModSAF [Tambe, 1997], in which it may be more effi-
cient to gather multiple coordinations (joint states) in one
constraint rather than only one coordination per constraint.
For instance, in RoboCup Soccer the players must coordinate
the attack and the defense[Matsubaraet al., 1998]. It is natu-
rally defining the coordination between multiple attackers and
multiple defenders and goalie with non-binary constraints. In
addition, by a single constraint we can define the coordina-
tion between part of the actions of a defender with partial set
of the attacker’s actions and the goalie’s actions.

In this paper we propose a model-based approach to ad-
dress this kind of coordination setting. We model the de-
sired behavior of a team, i.e., the allowed coordination among
the agents. At runtime the agents are observed and by infer-
ring their states and comparing to the allowed coordination
model, we diagnose the faulty agents. To solve the diagno-
sis problem, we propose to use a matrix-based representation
[Kalechet al., 2007] for the fundamental building blocks of
the diagnosis problem. This representation has several ben-
efits. First, it provides an easy and intuitive way to define
the coordination between teammates. Second, since we do
not represent the relations between teammates explicitly, but
gather them compactly (joint coordination in the same ma-
trix structure), this approach is scalable in the number of
agents and states (unlike the approach proposed in[Kalech
and Kaminka, 2005]). Finally, the use of a matrix-based
representation, enables the use of the matrix operations and
yields interesting information about the agents. To summa-



rize, the matrix representation enables an easy and efficient
way to diagnose coordination failures.
2 Related Work
Kalech and Kaminka[Kalech and Kaminka, 2005] present
a model-based diagnosis for general framework of coordi-
nation faults. In particular, they present consistency- and
abductive-based approaches to this problem and propose dis-
tributed constraint satisfaction algorithms to solve the diag-
nosis problem[Kalech and Kaminka, 2006]. However, they
model the coordination between the agents in pairs, meaning
that their model grows exponentially in the group size and in
the number of states.

Horling et al. [Horling et al., 1999] uses a fault-model of
failures and diagnoses to detect and respond to multi-agent
failures. In this model a set of pre-defined diagnoses are
stored in acyclic graph nodes. When a fault is detected a suit-
able node is triggered and according to the fault characters
the node activates other nodes along the graph. However, this
work does not address the scale-up issues. In addition, the
failure-model approach dictates that all possible failures be
analyzed in advance.

Fröhlich et al. [Fröhlich et al., 1997] suggest dividing a
spatially distributed system into regions, each under the re-
sponsibility of a diagnosing agent. If the fault depends on two
regions the agents that are responsible for those regions co-
operate in making the diagnosis. This method is inappropri-
ate for dynamic team settings, where agents cannot pre-select
their communication partners. Similarly, Roos et al.[Rooset
al., 2004] analyze a model-based diagnosis method for spa-
tially distributed knowledge. But, their method assumes that
there are no conflicts between the knowledge of the different
agents, i.e., that no coordination failure occurs.

Williams et al. [Williams et al., 2001; Kim et al., 2001]
provide a model for cooperation of unmanned vehicles. They
coordinate these vehicles by introducing a reactive model-
based programming language (RMPL). This model is robust
and can detect failures and recover. However, their model-
based language addresses only smaller-scale systems.

In previous work[Kalechet al., 2007] we have proposed
an approach to representing multi-agent coordination and ob-
servations, using matrix structures. This representation facil-
itates easy representation of coordination requirements, mod-
ularity, flexibility and reuse of existing systems. We have
demonstrated how in principle, this representation can sup-
port detection of coordination faults. In this paper, we build
on this work and utilize the matrix-based representation in
model-based coordination diagnosis. We show that we can
compactly represent joint states using matrix structures, and
thus reduce (in part) the exponential complexity of the diag-
nosis to linear in the number of agents and states.
3 Fundamental Objects
We adopt a model-based diagnosis approach to diagnose the
agents and the coordination failures. In model-based di-
agnosis of a single agent, the diagnoser uses a model of
the agent to generate expectations which are compared to
the observations, in order to form diagnoses[Reiter, 1987;
de Kleer and Williams, 1987]. In model-based multi-agents
diagnosis, the diagnoser models the coordination between the

agents[Kalech and Kaminka, 2005]. The goal of the diagno-
sis is to diagnose the failures in the coordination by detecting
deviation of the observation from the model’s predictions.

3.1 The Agent Model
The most fundamental entity is anagent. At any moment, an
agent is found in a givenstate. This is a logical, internal rep-
resentation of the agent status, or belief, at this very moment.
Throughout the paper, we will refer to the following sets:

(i) Let A be a set ofn agents,{a1, a2, ..., an}.
(ii) Let S be set ofm states,{s1, s2, ..., sm}.

For example, consider a management system for a shop
consisting of the following six agents (hereinafter this ex-
ample will be referred as ”the shop ”):ANNY the manager,
BENNY the cashier, two sellers (CANNY andDANNY ), ERNY
the storekeeper and a guard,FRENNY:

Ashop={ANNY, BENNY, CANNY , DANNY , ERNY,
FRENNY}
Agents may be in one of eight possible states:

Sshop={BREAK, IDLE, NEGOTIATE, SELL, INNERTALK ,
WATCH, GUARD, EQUIP}
Having the two setsA andS, we can define the environment
for a team:

Definition 1 (environment). Let A be a set of agents, and
let S be a set of states. The pairE = 〈A,S〉 is called the
environmentof A overS.

Now that we have the definition of the environment, we can
continue to define the relation between an agent and a state.
In order to define the basic structures in terms of model-based
diagnosis, we will use a first-order logic:

Definition 2 (position). A positionfunction over an environ-
ment〈A,S〉 is a function thatpositionsan agent in a particu-
lar state:γ : A → S. In terms of first order logic, we define
the predicateγ′(ai, sj) = true ⇔ γ(ai) = sj . We will use
shorthand and denoteγ′(ai, sj) assi

j .

As mentioned in the introduction, one of the novelties of
this work is the possibility to gather joint coordinations to one
structure. To this end, we present a function to set multiple
states for an agent. To this end, we will define superposition:

Definition 3 (superposition). A superpositionfunction over
some environmentE = 〈A, S〉 is a functionΓ : A → ‖S‖\∅
i.e., it positions each agent in asetof possible states. Logi-
cally, Γ(ai) = S′i ⊆ S ⇒ (

∨
sj∈S′i si

j) ∧ (
∧

sj∈S\S′i ¬si
j).

For example, let us refer back to the agents and states
presented in the shop .γ(Erny) = Guard is a position
(sErny

Guard), while Γ(Anny) = {InnerTalk, Watch} is a su-
perposition. In first order logic:

(sAnny
InnerTalk ∨ sAnny

Watch)∧
¬sAnny

Break∧¬sAnny
Idle ∧¬sAnny

Negotiate∧¬sAnny
Sell ∧¬sAnny

Guard∧¬sAnny
Equip

Figure 1 presents the full superposition function for the
shop .



Γ(a) =





{INNERTALK , WATCH} a = ANNY

{BREAK, SELL} a = BENNY{
BREAK, NEGOTIATE,

SELL, EQUIP

}
a ∈ {CANNY , DANNY}

{GUARD} a = ERNY

{BREAK, INNERTALK} a = FRENNY

Figure 1: A superposition function.

3.2 A Model of Coordination
The multi-agent systems of interest to us are composed of
several agents, which (by design) are to satisfy certain coor-
dination constraints. We call this type of system ateam, to
distinguish it from general multi-agent systems in which it is
possible that no coordination constraints exist.

The states of agents in a team are coordinated. We uti-
lize a coordination primitive to define the coordination con-
straints. The coordination states a non-binary constraint be-
tween agents’ states, such that these states must be taken
jointly, at the same time.
Definition 4 (coordination(CRD)). A coordination is a con-
straint between agents’ positions, requiring them to be true
concurrently. Logically, we represent this constraint as fol-
lows: CRD(s1

i , ..., s
n
k ) ⇒ (s1

i∧, ...,∧sn
k )

For example, in the shop example above, an allowed coor-
dination could be:

CRD(sANNY
WATCH, sBENNY

SELL , sCANNY
NEGOTIATE, s

DANNY
BREAK , sERNY

GUARD, sFRENNY
INNERTALK )

Unlike [Kalech and Kaminka, 2005] that define a binary
constraint to represent a coordination only for pair of agents,
we define the coordination between multiple agents by a non-
binary constraint. In addition, we allow joint coordination
concurrently. That means that an agent can be found in one
of multiple states while other agents can be found in multiple
states. Fundamentally, we can represent the joint coordina-
tion as a conjunction statement of coordination constraints.
However, it is more efficient to define them using superposi-
tion (Definition 3).
Definition 5 (joint coordination). A joint coordination is a
constraint between agents’ super-position mandates that they
must be true concurrently. We represent this constraint as fol-
lows: CRD(A,S) ⇒ ⋃

ai∈A(Γ(ai) = S′i ⊆ S). Logically:

CRD(A,S) ⇒
∧

ai∈A

((
∨

sj∈S′i
si

j) ∧ (
∧

sj∈S\S′i
¬si

j))

The corresponding joint coordination for the superposition
presented in Figure 1 is (only the true literals for each agent
are shown):

CRD(A,S) =(sAnny
InnerTalk ∨ sAnny

Watch)∧
(sBenny

Break ∨ sBenny
Sell )∧

(sCanny
Break ∨ sCanny

Negotiate ∨ sCanny
Sell ∨ sCanny

Equip )∧
(sDanny

Break ∨ sDanny
Negotiate ∨ sDanny

Sell ∨ sDanny
Equip )∧

(sErny
Guard)∧

(sFrenny
Break ∨ sFrenny

InnerTalk)

This representation allows defining multiple constraints be-
tween the agents in the same structure. For example, while
ANNY selects stateINNERTALK or WATCH, BENNY must
selectBREAK or SELL and so on for all the agents.

3.3 A Model of Actions
At any given moment, each agent is in a givenstate. As a
result of its state, each agent takes someaction, in order to
fulfill its goal. An action is visible, i.e. others might ob-
serve it. A state is not necessarily related to one particular
action. Rather, it is possible that one of a few given ac-
tions will be taken at service of the same state. In the op-
posite direction, the same action might be taken at service of
a few different states. We will annotate the actions as a set
B = {b1, b2, . . . , b`}.

For example, in the shop we define eight states logical po-
sitions of the agents and nine actions, which the agents might
act upon. StateSELL, for example, is when an agent is busy
with closing the deal with a customer. Positioned at this state,
the agent might act in one of the actionsGET (getting the
product off the shelf),CARRY (carrying it to the customer)
or COUNTER (sitting near the counter). On the other hand,
an agent might alsoCARRY or GET while positioned at state
EQUIP, and not only when positioned inSELL.

When designing a multi-agent system, the designer defines
which actions might be taken by an agent when positioned in
each state. This is called thelatitudeof the agent.

Definition 6 (latitude). Let E = 〈A,S〉 be an environment,
andB be a set of actions, thelatitudeof any agenta ∈ A is a
functionλa : S → ‖B‖\∅.

This function maps, for any agenta ∈ A (rather than a cer-
tain agent as in definition 2), each state to a subset of actions
which the agent is allowed to pick while being in this state.
The straight-forward inverse function ofλa, the functionλ−1

a ,
would map subsets ofB to elements inS. While this func-
tion is not interesting, we do define a kind of ‘inverse’ to the
latitude function:

Definition 7 (interpretation). Let E = 〈A, S〉 be an envi-
ronment, andB be a set of actions, theinterpretation∀ai ∈ A
is the functionΛai : B → ‖S‖\∅. In terms of first order
logic:

(Λai(bk) = S′ ⊆ S) ⇒ (
∨

sj∈S′
si

j) ∧ (
∧

sj∈S\S′
¬si

j)

Λa of a given actionbj , is the set of all states that havebj

in their latitude. Given an action of any agenta′, we interpret
its action as one of a few given states, using this function.
Figure 2 presents the latitude and interpretation functions for
the shop example. For instance, an actionPhone taken by
any agent, sayBENNY, implies that its states areBREAK or
NEGOTIATE, meaning:

(sBenny
Break ∨ sBenny

Negotiate)∧
¬sBenny

Idle ∧¬sBenny
Sell ∧¬sBenny

InnerTalk∧¬sBenny
Watch∧¬sBenny

Guard∧¬sBenny
Equip

This is the first-order representation of the interpretation
presented in Figure 2(b):



λ(s) =





{ TALK , PHONE, STAND, OTHER} BREAK

{ STAND} IDLE

{ TALK , PHONE} NEGOTIATE

{ GET, CARRY, COUNTER} SELL

{ TALK} INNERTALK

{ STAND, WALK , TALK} WATCH

{ STAND, WALK} GUARD

{WALK , CARRY, PUT, GET} EQUIP

(a) A latitude function

Λ(b) =





{
BREAK, NEGOTIATE,

INNERTALK , WATCH

}
TALK

{ BREAK, NEGOTIATE} PHONE{
BREAK, IDLE,

WATCH, GUARD

}
STAND

{WATCH, GUARD, EQUIP} WALK

{ SELL} COUNTER

{ EQUIP} PUT

{ SELL, EQUIP} GET

{ SELL, EQUIP} CARRY

{ BREAK} OTHER

(b) An interpretation function

Figure 2: A latitude function for the example of the shop ,
and its interpretation function.

Λai(Talk) ⇒ sai

Break ∨ sai

Negotiate ∨ sai

InnerTalk ∨ sai

Watch,

Λai(Phone) ⇒ sai

Break ∨ sai

Negotiate,

Λai(Stand) ⇒ sai

Break ∨ sai

Idle ∨ sai

Watch ∨ sai

Guard,

Λai(Walk) ⇒ sai

Watch ∨ sai

Guard ∨ sai

Equip,

Λai(Counter) ⇒ sai

Sell,

Λai(Put) ⇒ sai

Equip,

Λai(Get) ⇒ sai

Sell ∨ sai

Equip,

Λai(Carry) ⇒ sai

Sell ∨ sai

Equip,

Λai(Other) ⇒ sai

Break

Now that we have a definition of the joint coordination (5)
and the definition of the interpretation function (7), we can
define the multi-agent system description (MASD). MASD
is a set of implications from the normality of the agents to the
correctness of the union of their superposition (based on the
joint coordination) and their interpreted states (based on the
interpretation). To define the normality of the agent we de-
fine the predicateAB(ai) which represents the abnormality
of agentai (failing):

Definition 8 (multi-agent system description (MASD)).
Given a set of agentsA = {a1, a2, . . . , an}, a set of
statesS = {s1, s2, . . . , sm} and a set of actionsB =
{b1, b2, . . . , b`}, MASD is a set:

MASD = {¬AB(ai) ⇔ (Γ(ai) = S′i
⋃

Λai(bk) = S” 0 ⊥)
|S′i ⊆ S ∧ S” ⊆ S ∧ ai ∈ A ∧ bk ∈ B}

This definition enforces the dependency between the per-
fection, or in terms of model-based diagnosis, the normality
of the agents and the correctness of their selected states based
on the joint coordination and the interpretation of their states
by their actions.

3.4 A Model of Observation
Knowing the exact state of each agent at every time requires
that the agent reports its state any time it is changed. This
is usually infeasible, since it involves massive communica-
tion resources. Our model-based diagnosis approach suggests
looking at the action of each agent. Thus the last building
block we define is the observation.

Definition 9 (agent-action). Let A = {a1, a2, . . . , an} be a
set of agents andB = {b1, b2, . . . , b`} a set of actions, an
agent-actionis a functionω : A → B, that maps each agent
to a particular action.

Definition 10 (observation (OBS)).A set of agent-actions:

OBS = {(ω(ai) = bk) |bk ∈ B ∧ ai ∈ A}
In the the shop example, the observation can be:

OBS = {ω(Anny) = Stand

ω(Benny) = Stand

ω(Canny) = Phone

ω(Danny) = Get

ω(Erny) = Carry

ω(Frenny) = Walk}

4 Diagnosis of Coordination Faults
A fault in the coordination of a multi-agent system may be the
result of a faulty agent(s). Given aMASD (Definition 8) it is
possible to infer that a fault exists and to generate hypotheses
as to the abnormal agents, by checking whether the observed
actions of the agents satisfy theMASD.

Let us formalize the coordination diagnosis in terms of
model based diagnosis:

Definition 11 (Coordination Diagnosis Problem (CDP)).
Given {A, MASD, OBS} where A is a team of agents
{a1...an}, MASD is a multi agent system description de-
fined overA (Definition 8), andOBS is the set of the actions
of the agents (Definition 10), then thecoordination diagnosis
problem (CDP)arises when

MASD ∪ {¬AB(ai)|ai ∈ A} ∪OBS ` ⊥
Given a CDP , the goal of the coordination diagnosis

process is to determine a minimal set of abnormal agents
whose selection and subsequent setting of theAB(.) clause
would eliminate the inconsistency. To this end we define the
consistency-based coordination diagnosis:
Definition 12 (consistency-based coordination diagnosis
(CBCD)). A minimal set∆ ⊆ A such that:

MASD
⋃
{AB(ai)|ai ∈ ∆}

⋃
{¬AB(ai)|ai ∈ A−∆}

⋃
OBS 0 ⊥

In our example, MASD is not consistent with the ob-
servation. A diagnosis for this coordination fault can be:
∆ = {Erny, Frenny}.

The goal now is to find∆. Consistency-based mini-
mal diagnosis is known as NP-hard problem[de Kleer and
Williams, 1987]. In particular, Kalech and Kaminka have



C6×8 =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 1 1 0 0
BENNY 1 0 0 1 0 0 0 0
CANNY 1 0 1 1 0 0 0 1
DANNY 1 0 1 1 0 0 0 1
ERNY 0 0 0 0 0 0 1 0
FRENNY 1 0 0 0 1 0 0 0




Figure 3: The coordination-matrix representation of the joint
coordination of Figure 1.

proposed algorithm to find consistency-based coordination
diagnosis[Kalech and Kaminka, 2005]. However, in their
paper the coordination is represented by binary constraints
between pair of agents’ states. On the other hand, in this pa-
per we represent joint coordination setting (1) by a non-binary
constraint between multi-agent, and (2) by joint coordination
between multiple states of each agent, rather than single inde-
pendent state. These two qualities enable an efficient repre-
sentation of more realistic problems on the one hand, and on
the other hand they simplify the representation so the diagno-
sis can be found even in linear time best case, in the number
of agents and states. In the next section we propose a matrix-
based representation presented in[Kalechet al., 2007], which
uses as the basis for an algorithm for coordination diagnosis
in linear time.
5 Matrix-Based Representation
We will represent the models of the coordination, the actions
and the observation by matrices.

Let A = {a1, a2, . . . , an} be a set of agents andS =
{s1, s2, . . . , sm} be a set of states. We represent the joint
coordination of the agents (Definition 5) by a Boolean matrix
of ordern×m.
Definition 13 (coordination-matrix). Let E be the environ-
ment〈A, S〉. A coordination-matrixC overE is a Boolean
matrix of ordern×m (C ∈ Bn×m) provides:

cij =

{
1 si

j ∈ Γ(ai)

0 otherwise

Given a set of statesS = {s1, s2, . . . , sm} and a set of
actionsB = {b1, b2, . . . , b`}, we can represent the interpre-
tation of the actions to the states (Definition 7) by a Boolean
matrix of order̀ ×m.
Definition 14 (interpretation-matrix). Let S be a set of
states andB a set of actions, aninterpretation-matrixI from
B to S is a Boolean matrix of order̀×m (I ∈ B`×m) pro-
vides:

iij =

{
1 sj ∈ Λ(bi)

0 otherwise

Figure 4 presents the corresponding interpretation-matrix
to the interpretation function presented in Figure 2(b). The
rows represent the actions and the columns represent the
states. For example, the second row says that once an agent
is observed doingPHONE, then its state is one of{BREAK,
NEGOTIATE}.

The last building block we define is the observation-matrix,
which is parallel to the observation Definition (10) in the
model-based diagnosis formulation.

I9×8 =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

TALK 1 0 1 0 1 1 0 0
PHONE 1 0 1 0 0 0 0 0
STAND 1 1 0 0 0 1 1 0
WALK 0 0 0 0 0 1 1 1
COUNTER 0 0 0 1 0 0 0 0
PUT 0 0 0 0 0 0 0 1
GET 0 0 0 1 0 0 0 1
CARRY 0 0 0 1 0 0 0 1
OTHER 1 0 0 0 0 0 0 0




Figure 4: The interpretation-matrix for the interpretation
function presented in Figure 2(b).

Θ6×9 =




TALK PHONE STAND WALK COUNTER PUT GET CARRY OTHER

ANNY 0 0 1 0 0 0 0 0 0
BENNY 0 0 1 0 0 0 0 0 0
CANNY 0 1 0 0 0 0 0 0 0
DANNY 0 0 0 0 0 0 1 0 0
ERNY 0 0 0 0 0 0 0 1 0
FRENNY 0 0 0 1 0 0 0 0 0




Figure 5: An observation matrix.

Definition 15 (observation-matrix). Let A =
{a1, a2, . . . , an} be a set of agents andB = {b1, b2, . . . , b`}
a set of actions, anobservation-matrixΘ stands for the
observation matrix representation:

θij =

{
1 ω(ai) = bj

0 otherwise

Figure 5 presents an example to an observation matrix. The
rows represent the agents and the columns the actions. Pay
attention that in every row there is exactly a single ‘1’ since
every agent is observed in one action.

6 Diagnosis Procedure
A coordination fault occurs when the current agents’ posi-
tions (Definition 2) do not match the expected coordination
given by the coordination-matrix (Definition 13). Thus, if we
know the current positions of the agents, we can say for sure
whether the system has a fault or not. The exact state of each
agent is known only to the agent itself. However, its action is
observable. By observing its current action, we can infer the
state in which the agent is found. This could be done using
the formula:

Ω = Θ · I (1)

Where,Θ is the observation matrix andI is the interpreta-
tion matrix.Ω is ann×m Boolean matrix. Each elementj in
row i represents whether it is possible that agentai is now in
statesj (‘1’ entry) or not (‘0’ entry). Note that each element
ωi,j is the sum of multiplying each elementk in row i of Θ by
elementk in columnj of I. This multiplication, of course, is
‘1’ iff both of them are ‘1’. Since each row inΘ has exactly
one element which is ‘1’, the value of each element inΩ will
be at most ‘1’.



Ω6×8 = Θ · I =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 1 1 0 0 0 1 1 0
BENNY 1 1 0 0 0 1 1 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 1 0 0 0 1
FRENNY 0 0 0 0 0 1 1 1




Figure 6: The matrix given by the product between the
observation-matrix and the interpretation-matrix.

R = Ω ∧ C =




BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 0 1 0 0
BENNY 1 0 0 0 0 0 0 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 0 0 0 0
FRENNY 0 0 0 0 0 0 0 0




Figure 7: The matrix given by boolean ‘and’ operation be-
tween the coordination-matrixC andΩ.

For example, Figure 6 presents the matrix given by the
product between the observation-matrix (given in Figure 5)
and the interpretation-matrix (given in Figure 4). Our obser-
vation may lead us to conclude thatCANNY ’s state is either
BREAK or NEGOTIATE.

We can now explain the diagnosis algorithm. Failure is
defined as a situation wherein none of an agent’s possible as-
signed state (according toΩ) appears on the ‘allowed coordi-
nation’, designated asC (the coordination-matrix). In order
to examine possible matches we will operate a logical ‘and’
betweenC andΩ in an element-by-element process, to get
the results matrix,Rn×m:

ri,j = ci,j ∧ ωi,j (2)

R represents all the agents-assigned combinations that sat-
isfy C according to interpreted states by the observation. The
combinations represented byR are all those that agentai is
found in one of the statessj that match ‘1’ element in rowRi.
Thus, if in each rowi in R there is at least one ‘1’ element, it
implies that at least one combination exists. In this case, we
may assume that the agents will be found in one of those joint
states. If, however,R defines an all-zero row exists, then the
assigned agents’ states are definitely forbidden. In this case, a
failure alert is warranted, and the diagnosis is that the agents
that are represented by these all-zero rows are abnormal. This
operation takes onlyO(nm) operations (counting the ‘1’s for
m elements on each ofR’s n rows).

Returning to the shop example, matrixR in Figure 7 is
the result of an element-by-element ‘and’ operation between
C (Figure 3) andΩ (Figure 6). In this coordination-matrix,
the two bottom lines, representingERNY andFRENNY, are
all-zero. No desired combination can explain their actions.
A failure has been detected and the diagnosis is∆ =
{Erny, Frenny}.

In order to prove that the algorithm finds complete and
sound diagnosis we will prove that all-zero row entails the
abnormality of the agent represented by that row and vice
versa. To prove this statement we should prove first two log-
ical lemmas related to the consistency of the sets given by
the superposition and the interpretation functions. To sim-
plify the proof we define a set of statesS = {s1, s2 . . . sp},
and two subsetsS′, S” ⊆ S (S′ 6= ∅, S” 6= ∅), whereS′
represents the set given by the superposition function andS”
represents the set given by the interpretation function. We
define the following statements:

1. ST1 : (
∨

sj∈S′ sj) ∧ (
∧

sj∈S\S′ ¬sj)

2. ST2 : (
∨

sj∈S” sj) ∧ (
∧

sj∈S\S” ¬sj)

Lemma 1. S′
⋂

S” = ∅ ⇒ ST1 ∧ ST2 ` ⊥
Proof: Without loss of generality,ST1 ⇒ ∃sj ∈ S′ = true,
butS′

⋂
S” = ∅ ⇒ sj ∈ S\S”,

ST2 ⇒ sj = false.
Consequently,ST1 ∧ ST2 ` ⊥. 2

Lemma 2. S′
⋂

S” 6= ∅ ⇒ ST1 ∧ ST2 0 ⊥
Proof: To prove consistency we need to show a truth assign-
ment. Without loss of generality, assumeS′

⋂
S” = s1,

⇒ ST1 = true ∧ ST2 = true.
Consequently,ST1 ∧ ST2 0 ⊥. 2

Theorem 1. Given a coordination-matrix representation:
∃i, 1 ≤ i ≤ n :

∧m
j=1 rij = 0 ⇔ AB(ai)

Proof:

1. ∃i, 1 ≤ i ≤ n :
∧m

j=1 rij = 0 ⇒ AB(ai) (soundness):

Without loss of generality, assume
∧m

j=1 r1j = 0 and
prove thatAB(a1).∧m

j=1 r1j = 0 ⇒ ∀j : c1,j ∧ ω1,j = 0 (equation 2).

(a) c1,j :
i. c1,j = Γ(a1) = S′ ⊆ S (S′ 6= ∅) (Definition

13).
ii. Γ(a1) = S′ ⇒ ST1 = (

∨
sj∈S′ s

1
j ) ∧

(
∧

sj∈S\S′ ¬s1
j ) (Definition 3).

(b) ω1,j :
i. ω1,j = Λ(ω(a1)) = S” (S” 6= ∅) (equation 1,

Definitions 14, 15).
ii. Λ(ω(a1)) = S” ⇒ ST2 = (

∨
sj∈S” s1

j ) ∧
(
∧

sj∈S\S” ¬s1
j ) (Definition 7).

By (a) and (b):∀j : c1,j ∧ ω1,j = 0 ⇒ S′
⋂

S” = ∅
By Lemma 1:⇒ ST1 ∧ ST2 ` ⊥
Consequently by Definition 8:AB(a1).

2. @i, 1 ≤ i ≤ n :
∧m

j=1 rij = 0 ⇒ ¬AB(ai) (complete-
ness):
Without loss of generality, assumer1,1 6= 0 and prove
that¬AB(a1).
r1,1 6= 0 ⇒ c1,1 ∧ ω1,1 = 1 (equation 2).

(a) c1,1:
i. c1,1 = 1 ⇒ s1,1 ∈ Γ(a1) (Definition 13).



ii. Γ(a1) = S′ ⇒ ST1 = (
∨

sj∈S′ s
1
j ) ∧

(
∧

sj∈S\S′ ¬s1
j ).

iii. ⇒ s1
1 ∈ S′

(b) ω1,1:

i. ω1,1 = 1 ⇒ s1,1 ∈ Λ(ω(a1)) = S” (equation
1, Definitions 14, 15).

ii. Λ(ω(a1)) = S” ⇒ ST2 = (
∨

sj∈S” s1
j ) ∧

(
∧

sj∈S\S” ¬s1
j ) (Definition 7).

iii. ⇒ s1
1 ∈ S”

From (a) and (b):S′
⋂

S” 6= ∅ (s1
1 ∈ (S′

⋂
S”))

By Lemma 2:⇒ ST1 ∧ ST2 0 ⊥
Consequently by Definition 8:¬AB(a1).2

In order to detect failures by observations only, we define
two policies of decision[Kaminka and Tambe, 2000]. The
optimistic policyassumes that as long as the system is not
proven to be faulty, no fault should be reported. Using this
policy, one can never get a false alarm. If it reports a fault,
then a fault has certainly occurred. The other policy is the
pessimistic policy. This policy reports a fault in the system,
unless it is completely confident that no fault has occurred.
Using this policy, one can never get to a situation of an un-
reported fault. We have adopted here an optimistic policy,
thus in matrixΩ we inferredall the possibilities of the states
that could be taken by the observed agents. By generating the
result matrix (R) we check if at least one of the interpreted
joint–states of the observed agents is consistent with the de-
sired coordination.

Sometimes, an agent cannot detect the exact action of one
of its teammates. In this case, we can still provide a par-
tial solution; the agent may assume that the teammate row is
‘all-ones’ (i.e., its action might be any action in the system).
Although in this case we are likely to miss faults, we still
keep the property of the optimistic policy, that is, report no
false-alarms. If the system principally allows communication
between agents, the agent may better solve the problem by
explicitly communicate agents whose action are not observ-
able for it.

7 Complex Coordination
One of the advantages of the matrix representation is the pos-
sibility to define complex coordinations[Kalechet al., 2007].
One coordination-matrix will usually not suffice for a full de-
sired coordination definition. Thus, the coordination-matrix
we introduced earlier (Definition 13), may only partially de-
fine the allowed combinations in a desired coordination. For
instance, in the shop example, assumeERNY could replace
FRENNY in GUARD duty, the coordination-matrix in Figure 3
does not deal with this new relation. Moreover, we cannot add
another state toC, by just changingc6,7 〈FRENNY, GUARD〉
from ‘0’ to ‘1’. This would allow undesired combinations,
such asERNY andFRENNY guarding simultaneously. In this
section we will briefly present the complex coordinations and
then focus on the diagnosis aspects.

The most important operator used to join a few
coordination-matrices is the ‘or’, notated as ‘t ’. Defining

two sets of coordinationC1 t C2, means that the set of al-
lowed combinations in the system is the union of all the com-
binations defined byC1 and all the combinations defined by
C2. This operator may be extended to expressions of the kind
C1 t C2 t · · · t Cp.

There may be cases in which the use oft is more difficult
for the designer to describe the system. Thus, we present the
second basic operator, ‘and’, which is notated by a ‘u ’. The
expressionC1 u C2 represents all the combinations that are
found in the intersection of those that are defined byC1 and
those defined byC2. In fact, one might notice that any ex-
pression of the formC1 u C2, may be reduced to an equiva-
lent coordination-matrix, that represents exactly the same set
of combinations. This is the coordination-matrix that is the
result of a logical-and in an element-by-element fashion be-
tweenC1 andC2.

We call this extended structure of combined coordination-
matrices using operators arule. An example for a complex
rule is:

R = C1 t ((C2 t C3) u (C4 t C5)) t C6 t (C7 u C8 u C9)
Back to the diagnosis problem, to find a diagnosis we should
compare by ‘and’ing operator the product matrix of the
interpretation-matrix and the observation-matrix (Ω) against
the coordination-matrix. TestingΩ against a ruleR =
C1 t C2 t · · · t Cp is simple. One must perform the all-
zero row test presented earlier for each of thep coordination-
matrices. That is, for eachCk in R, calculating the result
matrix Rk by logically ‘and’ing Ω with Ck in an element-
by-element fashion, and then check whetherRk has all-zero
row. Due to the nature of the operator ‘t ’, it is enough to
verify that at least one suchRk has no all-zero row, in order
to conclude that the agents are coordinated. For ‘and’ opera-
tor, on the other hand, (for instanceC1 u C2) the absence of
the property of all-zero row must hold forbothC1 andC2.

In fact we have shown[Kalechet al., 2007] an algorithm
which reduces a rule to a collection of coordination-matrices
that are all combined by an or operator. Thus we could de-
tect failure by ‘anding’ each one of the coordination-matrices
with Ω, and check all-zero rows in the result matrices.

For the diagnosis purpose we should provide a set of ab-
normal agents. Based on the diagnosis definition we have
presented here, an indication to a fault is once all thep
coordination-matrices produce all-zero rows in the corre-
spondingR matrices. Then each one of the matricesRk

produces a diagnosis. For recovery purpose we prefer to ex-
plore minimal diagnoses. A minimal diagnosis is a diagnosis
which no proper subset of it is a diagnosis. To this end, during
the diagnosis process we prune all the diagnoses that are not
minimal. In order to model complex rules in terms of model-
based diagnosis we should define thet and u operators.
Intuitively, since our model is defined in first order logic, we
can define these operators using the regular logical operators
∨ and∧. A formal representation is beyond the scope of this
paper.

8 Summary and Future Work
In this paper we presented formalization for diagnosing coor-
dination failures in multi agent systems, in terms of model-
based diagnosis. In contrast to previous work, the model



presented in this paper is more efficient and reflects the real
world, by defining non-binary constraints between the agents
and by enabling to gather multiple states in one constraint.

To solve the diagnosis problem we defined a matrix-based
notation for the fundamental parts of the diagnosis represen-
tation, which serves as a general framework for coordination
design and definition in multi agent systems. Using this rep-
resentation, we showed an efficient fault detection and diag-
nosis algorithm in a space and time complexity that is linear
by the number of agents and states.

In the future we plan to add partial observations capabili-
ties which will find the minimum set of agents that may to-
gether provide the full information, or at least the best possi-
ble information. Combining this with explicit communication
among agents may result a system that is cheap in resources,
yet very reliable. In addition, at the moment our algorithm as-
sumes that the coordination among the team members is de-
fined at the beginning and must be consistent along the sys-
tem lifetime. However, real-world multi-agent systems are
dynamic, and the desired coordination may change, so we
plan to extend our algorithm to dynamic coordination.

Another interesting field of future research is using prob-
abilistic values for observations, rather than binaries. In this
way, rather than defining the policy as ‘pessimistic’ or ‘opti-
mistic’, we will be able to define the probability that a fault
has occurred at a given moment.

Acknowledgements
Much of the work on this paper was done in the course of my
postdoctoral fellowship at the School of Engineering and Ap-
plied Sciences at Harvard University. My deep appreciation
goes out to Prof. Barbara Grosz for her support during this
time, and to Rani Nelken for his help in the logic sections.

References
[Bacchus and van Beek, 1998] F. Bacchus and P. van Beek.

On the conversion between non-binary and binary con-
straint satisfaction problems. InProceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98),
pages 311–318, 1998.

[de Kleer and Williams, 1987] J. de Kleer and B. C.
Williams. Diagnosing multiple faults.Artificial Intelli-
gence, 32(1):97–130, 1987.

[Fröhlichet al., 1997] Peter Fr̈ohlich, Iara de Almeida Mora,
Wolfgang Nejdl, and Michael Schröder. Diagnostic agents
for distributed systems. InModelAge Workshop, pages
173–186, 1997.

[Horling et al., 1999] Bryan Horling, Victor R. Lesser, Regis
Vincent, Ana Bazzan, and Ping Xuan. Diagnosis as an in-
tegral part of multi-agent adaptability. Technical Report
CMPSCI Technical Report 1999-03, University of Mas-
sachusetts/Amherst, January 1999.

[Kalech and Kaminka, 2005] Meir Kalech and Gal A.
Kaminka. Towards model-based diagnosis of coordi-
nation failures. InAmerican Association for Artificial
Intelligence (AAAI-05), 2005.

[Kalech and Kaminka, 2006] Meir Kalech and Gal A.
Kaminka. Diagnosis of multi-robot coordination failures

using distributed csp algorithms. InAmerican Association
for Artificial Intelligence (AAAI-06), 2006.

[Kalechet al., 2007] Meir Kalech, Michael Lindner, and
Gal A. Kaminka. Matrix-based representation for coordi-
nation fault detection: A formal approach. InProceedings
of the sixth international joint conference on autonomous
agents and multiagent systems (AAMAS), 2007.

[Kaminka and Tambe, 2000] Gal A. Kaminka and Milind
Tambe. Robust multi-agent teams via socially-attentive
monitoring. Journal of Artificial Intelligence Research,
12:105–147, 2000.

[Kim et al., 2001] Phil Kim, Brian C. Williams, and Mark
Abramson. Executing reactive, model-based programs
through graph-based temporal planning. InProceedings
of the International Joint Conference on Artificial Intelli-
gence, 2001.

[Krauset al., 1998] Sarit Kraus, Sycara Katia, and Amir
Evenchik. Reaching agreements through argumentation: a
logical model and implementation.Artificial Intelligence,
104(1–2):1–69, 1998.

[Matsubaraet al., 1998] Hitoshi Matsubara, Ian Frank, ku-
miko Tanaka-Ishii, Ituski Noda, Hideyuki Nakashima, and
Koiti Hasida. Automatic soccer commentary and robocup.
In Minoru Asada, editor,the Second RoboCup Workshop
(RoboCup-98), pages 7–22, Paris, France, 1998.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles.Artificial Intelligence, 32(1):57–96, 1987.

[Rooset al., 2004] Nico Roos, Annette ten Teije, and Cees
Witteveen. Reaching diagnostic agreement in multi-
agent diagnosis. InProceedings of Autonomous Agents
and Multi Agent Systems (AAMAS-04), pages 1254–1255,
2004.

[Tambeet al., 2005] M. Tambe, E. Bowring, H. Jung,
G. Kaminka, R. Maheswaran, J. Marecki, P. J. Modi,
R. Nair, S. Okamoto, J. P. Pearce, P. Paruchuri, D. Pyna-
dath, P. Scerri, N. Schurr, and P. Varakantham. Conflicts
in teamwork: hybrids to the rescue. InProceedings of
the fourth international joint conference on Autonomous
agents and multiagent systems (AAMAS–05), pages 3–10,
2005.

[Tambe, 1997] Milind Tambe. Towards flexible teamwork.
Journal of Artificial Intelligence Research, 7:83–124,
1997.

[Williams et al., 2001] B.C. Williams, P. Kim, M. Hofbaur,
J. How, J. Kennell, J. Loy, R. Ragnoand J. Stedl, and
A. Walcott. Model-based reactive programming of coop-
erative vehicles for mars exploration. June 2001.


