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Abstract

One of the key requirements in many multi-agent
teams is that agents must coordinate on specific as-
pects of their joint task. Unfortunately, this coordi-
nation may fail due to intermittent failures in sen-
sor readings, communication failures, etc. A key
challenge in model-based diagnosis of such coordi-
nation faults is to represent the model coordination
between the agents in a way that allows efficient de-
tection and diagnosis, based on observations of the
agents involved. Previous mechanisms are useful
only for small groups as they represent the coordi-
nation with binary constraints. This paper presents
a model-based diagnosis (MBD) approach to co-
ordination failure in which non-binary constraints
are allowed. This model presents two advantages:
(1) it appears quite frequently when modeling real
problems, (2) it addresses large groups by gathering
multiple coordinations in one constraint. To solve
the diagnosis problem, we propose a matrix-based
approach to represent the basic building blocks of
the MBD formalization. This representation is both
generic and efficient for large-scale teams.

Introduction

(typically, the system inputs). The resulting simulated behav-
ior (typically, outputs) are compared to the actual behavior to
detect discrepancies indicating failures. The model can then
be used to pinpoint possible failing components within the
system.

Previous work presents model-based diagnosis for coordi-
nation faultsKalech and Kaminka, 2005; 20Qéowever, it
models the coordination between every pair of agents as a set
of binary constraints between the agents’ states. Thus, this
representation does not scale well in the group size and in the
number of states.

On the contrary, non-binary constraints appear quite fre-
guently when modeling real probleni8acchus and van
Beek, 1998. Such problems could be naturally defined by
non-binary constraints between multiple agents. In addition,
there are domains like RoboCup Res€Ti@mbeet al, 2004
or ModSAF [Tambe, 199, in which it may be more effi-
cient to gather multiple coordinations (joint states) in one
constraint rather than only one coordination per constraint.
For instance, in RoboCup Soccer the players must coordinate
the attack and the defenBdatsubaraet al,, 1994. It is natu-
rally defining the coordination between multiple attackers and
multiple defenders and goalie with non-binary constraints. In
addition, by a single constraint we can define the coordina-
tion between part of the actions of a defender with partial set

With increasing deployment of robotic and agent teams irPf the attacker’s actions and the goalie’s actions.

complex, dynamic settings, there is an increasing need to In this paper we propose a model-based approach to ad-
also be able to respond to failures that occur in multi-agentiress this kind of coordination setting. We model the de-
teamd Tambe, 1997; Kaminka and Tambe, 2000; Kalech andsired behavior of a team, i.e., the allowed coordination among
Kaminka, 2006. One type of failure of particular interest the agents. At runtime the agents are observed and by infer-
in multi-agent systems is eoordination fault where agents ring their states and comparing to the allowed coordination
come to disagree on salient aspects of their joint task. model, we diagnose the faulty agents. To solve the diagno-
There is thus a particular need to be able to detect and dsis problem, we propose to use a matrix-based representation
agnose the causes for coordination faults that may occur, ifKalechet al,, 2007 for the fundamental building blocks of
order to facilitate recovery and reestablishment of collaborathe diagnosis problem. This representation has several ben-
tion, e.g., by negotiationKrauset al, 1999. This type of efits. First, it provides an easy and intuitive way to define
diagnosis is calledocial diagnosissince it focuses on find- the coordination between teammates. Second, since we do
ing causes for failures to maintain social relationships, i.e.not represent the relations between teammates explicitly, but
coordination failures. gather them compactly (joint coordination in the same ma-
In this paper we focus on a model-based diagnosis apirix structure), this approach is scalable in the number of
proach for coordination failures. Model-based diagnosisagents and states (unlike the approach proposé¢iatech
(MBD) [Reiter, 1987; de Kleer and Williams, 198%lies on  and Kaminka, 200§. Finally, the use of a matrix-based
a model of the diagnosed system, which is utilized to simutepresentation, enables the use of the matrix operations and
late the behavior of the system given the operational contexields interesting information about the agents. To summa-



rize, the matrix representation enables an easy and efficieagentdKalech and Kaminka, 2005The goal of the diagno-
way to diagnose coordination failures. sis is to diagnose the failures in the coordination by detecting
2 Related Work deviation of the observation from the model’s predictions.

Kalech and KaminkdKalech and Kaminka, 200%resent 31 The Agent Model

a model-based diagnosis for general framework of coordi- o

nation faults. In particular, they present consistency- and h€ most fundamental entity is agent At any moment, an
abductive-based approaches to this problem and propose dRgent |s_found in a givegtate This is a_loglcal, _mternal rep-
tributed constraint satisfaction algorithms to solve the diagfesentation of the agent status, or belief, at this very moment.
nosis probleniKalech and Kaminka, 2006 However, they Throughout the paper, we will refer to the following sets:
model the coordination between the agents in pairs, meaning(i) Let A be a set of» agents{a1, as, ..., a, }.
:Egtrfzﬁqlrbrer}o(g‘esltg:g\é\{s exponentially in the group size and in (i) LetS be set ofn states{sy, 55, ., sm ).

Horling et al. [Horling et al, 1999 uses a fault-model of For example, consider a management system for a shop
failures and diagnoses to detect and respond to multi-agerbnsisting of the following six agents (hereinafter this ex-
failures. In this model a set of pre-defined diagnoses arample will be referred as "the shop "ANNY the manager,
stored in acyclic graph nodes. When a fault is detected a SUIBENNY the cashier, two seller€ANNY andDANNY ), ERNY
able node is triggered and according to the fault characterthe storekeeper and a guaFRENNY:
the node activates other nodes along the graph. However, this Agho={ANNY, BENNY, CANNY, DANNY, ERNY,
work does not address the scale-up issues. In addition, tHeRENNY}
failure-model approach dictates that all possible failures beé\gents may be in one of eight possible states:
analyzed in advance. Ssho={BREAK, IDLE, NEGOTIATE, SELL, INNERTALK,

Frohlich et al. [Frohlich et al, 1997 suggest dividing a WATCH, GUARD, EQUIP}
spatially distributed system into regions, each under the reHaving the two sets! andS, we can define the environment
sponsibility of a diagnosing agent. If the fault depends on twdror a team:
regions the agents that are responsible for those regions cp- .. .. .
op%rate in magking the diagnosisr,). This method is ina%proprigef'n't'on 1 (environment). Let A be a set O.f agents, and
ate for dynamic team settings, where agents cannot pre—selelgf S be a set of states. The pdif = (4, 5) is called the
their communication partners. Similarly, Roos et[&ooset environmenof A overs.
al., 2004 analyze a model-based diagnosis method for spa- Now that we have the definition of the environment, we can
tially distributed knowledge. But, their method assumes thatontinue to define the relation between an agent and a state.
there are no conflicts between the knowledge of the differenin order to define the basic structures in terms of model-based
agents, i.e., that no coordination failure occurs. diagnosis, we will use a first-order logic:

W!Illams et al. [Williams et_ al, 2001; Kimet aI.,_ZOO]] Definition 2 (position). A positionfunction over an environ-
provm!e amodel for cooperation of unmanned veh|_cles. The ent(A, S) is a function thapositionsan agent in a particu-
coordinate these vehicles by introducing a reactive modelr, ‘sia0 " 4 . 5 In terms of first order logic, we define
based programming language (RMPL). This model is robus%he : P e N o :

. . predicate)/(a;, s;) = true < v(a;) = s;. We will use
and can detect failures and recover. However, their model-h thand and d o i
based language addresses only smaller-scale systems. ~ >orthandan enoté(a;, s;) assj.

In previous work[Kalechet al, 2007 we have proposed As mentioned in the introduction, one of the novelties of
an approach to representing multi-agent coordination and olihis work is the possibility to gather joint coordinations to one
servations, using matrix structures. This representation facilstructure. To this end, we present a function to set multiple
itates easy representation of coordination requirements, modtates for an agent. To this end, we will define superposition:

ularity, flexibility and reuse of existing systems. We have peinition 3 (superposition). A superpositiorfunction over
demonstrated how in principle, this representation can SUPsome environment — (A, S)isafunctionl : A — ||S]\0

port detection of coordination faults. In this paper, we buildi_e. it positions each agent insetof possible states. Logi-

on this work and utilize the matrix-based representation irl:allyy T(a;)=S"C 8= (V CsE) A (A st
model-based coordination diagnosis. We show that we carn” ~'~ = 8, €57 77 sjES\S" 7/
compactly represent joint states using matrix structures, and For example, let us refer back to the agents and states
thus reduce (in part) the exponential complexity of the diagpresented in the shop y(Erny) = Guard is a position

nosis to linear in the number of agents and states. (sermv ), while T'(Anny) = {InnerTalk, Watch} is a su-
3 Fundamental Objects perposition. In first order logic:

We adopt a model—bas_ed <_jiagno_sis approach to diagnose t.he Anny Anny

agents and the coordination failures. In model-based di- (STnnerrate ¥ SWaten)/\

agnosis of a single agent, the diagnoser uses a model of Anny ,_ Anny \_ Anny _gAnny \ _ Anny  _ Anny
thge agent to gengerategexpectationsgwhich are compared toSBTe“"CA Srdie” NS Negotiate\ " Ssett” N Guard\ "5 Bquip
the observations, in order to form diagno$Beiter, 1987;

de Kleer and Williams, 1987 In model-based multi-agents  Figure 1 presents the full superposition function for the
diagnosis, the diagnoser models the coordination between trshop .



{INNERTALK, WATCH}  a = ANNY This representation allows defining multiple constraints be-

{BBREAK’ SNELL} a = BENNY tween the agents in the same structure. For example, while
(a) = A EEZ?JTI;ATE’} a € {CANNY, DANNY } ANNY selects statéNNERTALK or WATCH, BENNY must
{GuarD} w = Erny selectBREAK or SELL and so on for all the agents.

{BREAK, INNERTALK } a = FRENNY

3.3 A Model of Actions

At any given moment, each agent is in a giveate As a
result of its state, each agent takes santon, in order to
o fulfill its goal. An action is visible, i.e. others might ob-
3.2 A Model of Coordination serve it. A state is not necessarily related to one particular
The multi-agent systems of interest to us are composed adction. Rather, it is possible that one of a few given ac-
several agents, which (by design) are to satisfy certain coottions will be taken at service of the same state. In the op-
dination constraints. We call this type of systerteam to  posite direction, the same action might be taken at service of
distinguish it from general multi-agent systems in which it isa few different states. We will annotate the actions as a set
possible that no coordination constraints exist. B ={by1,ba,...,be}.

The states of agents in a team are coordinated. We uti- For example, in the shop we define eight states logical po-
lize a coordination primitive to define the coordination con-sitions of the agents and nine actions, which the agents might
straints. The coordination states a non-binary constraint beact upon. Stat&eLL, for example, is when an agent is busy
tween agents’ states, such that these states must be takeith closing the deal with a customer. Positioned at this state,
jointly, at the same time. the agent might act in one of the actio®&T (getting the

Definition 4 (coordination(CRD)). A coordination is acon- Product off the shelf)CARRY (carrying it to the customer)
straint between agents’ positions, requiring them to be tru®’ COUNTER (sitting near the counter). On the other hand,
concurrently. Logically, we represent this constraint as fol-&n agent might alsGARRY or GET while positioned at state
lows: CRD(s}, ..., s7) = (sA, ..., AsT") EQuip, and not only when positioned BeELL.

For example, in the shop example above, an allowed coor- ,"WNen designing a multi-agent system, the designer defines
dination could E)e' ' which actions might be taken by an agent when positioned in

| each state. This is called thaitude of the agent.

CRD( ANNY BENNY CANNY DANNY ERNY FRENNY )

.SWATCH? SseLL ﬂSNEGOTI.ATE, SBREAK ) SGUARDv.SINNERTA.LK Definition 6 (latitude). Let E = (A, S) be an environment,
Unlike [Kalech and Kaminka, 2005hat define a binary andp be a set of actions, tHatitude of any agent: € A is a
constraint to represent a coordination only for pair of agentsgnction A, : S — ||BJ|\(.

we define the coordination between multiple agents by a non-

binary constraint. In addition, we allow joint coordination _ . ; ey i
y ] Hgin agent as in definition 2), each state to a subset of actions

concurrently. That means that an agent can be found in ong". . . . L .
y g which the agent is allowed to pick while being in this state.

of multiple states while other agents can be found in multipl . . ; LT
states. Fundamentally, we can represent the joint coordin.:iathe straight-forward inverse function a, the functiom,

tion as a conjunction statement of coordination constrainta¥ould map subsets @ to elements inS. While this func-

However, it is more efficient to define them using Superposi_tion is not interesting, we do define a kind of ‘inverse’ to the

tion (Definition 3). latitude function:

Definition 5 (joint coordination). A joint coordination is a  Definition 7 (interpretation). Let E = (A,.5) be an envi-
constraint between agents’ super-position mandates that thégnment, and3 be a set of actions, theterpretationva, € A
must be true concurrently. We represent this constraint as fol$ the functionA,, : B — |[S|\(. In terms of first order
lows: CRD(A, S) = U, c4(T(a;) = 8" C S). Logically: ~ 10gic:

CRD(A,S)= N ((\ sHA(C N\ -s) Ao (bi)=5"C 9=\ sHnC N\ —si)

a; €A s;€8% 5;€8\8" s;€8” s;€S\S’

Figure 1: A superposition function.

This function maps, for any agenatc A (rather than a cer-

The corresponding joint coordination for the superposition ﬁ}a .°f| at.?“éen gc;tlorb-, IS t?e se]E of all sgtes tha}[t ha&’ﬁ
presented in Figure 1 is (only the true literals for each agen: eir latitude. Given an action of any agentweinterpret
its action as one of a few given states, using this function.

are shown): - . : ; .
) Figure 2 presents the latitude and interpretation functions for
CRD(A, 5) =(s v s the shop example. For instance, an actidhone taken by
190 ) =\ SnnerTalk ¥V SWatch any agent, saBENNY, implies that its states af@REAK or
Benny |, Benny NEGOTIATE, meaning:
(SB'r‘eak v Ssell )/\ 9
Canny Canny Canny Canny
(SBreak \ SNegotiate \ SSell v SEquip )/\ ( gf_:}:]zj V Sﬁeezgtzate)/\
Danny Danny Danny Danny B B B B B B
(SBreak v SNegotiate v SSell N SEquip )/\ _'Sldelzny/\_'SS:ZZny/\_'Slrf:einalk/\_'SV[/‘S;Z}%/\_'SGZZ:%/\_'SErGIZZ?y
Erny o ' . . :
(8 Guara)\ This is the first-order representation of the interpretation
(s

Frenny Frenny H : .
Break Y STt Baik) presented in Figure 2(b):



{ TALK, PHONE, STAND, OTHER} BREAK 3 4 A Model Of Observation

{ StanD } IDLE

{ TALK, PHONE} NEGOTIATE Knowing the exact state of each agent at every time requires
As) = g?;;‘};’““ CouNTER} N that the agent reports its state any time it is changed. This

{ STAND, WALK, TALK } WaTCH is usually infeasible, since it involves massive communica-

{ STAND, WALK } GuARD tion resources. Our model-based diagnosis approach suggests

{ WaLK, CARRY, PUT, GET} Eouip looking at the action of each agent. Thus the last building

(@) A latitude function block we define is the observation.

{IBNRNE::TANLiGaxli} TaLK Definition 9 (agent-action). Let A = {aj,as,...,a,} be a
{ BREAK, NEGOTIATE]  PHONE set of agents an® = {b1,b2,...,b,} a set of actions, an
BREAK, IDLE, Stanp agent-actioris a functionw : A — B, that maps each agent
A — {xVVATCHEUARD four) W to a particular action.
- /ATCH, GUARD, EQUIP ALK
{sew} COUNTER Definition 10 (observation (OBS)). A set of agent-actions:
{ EQuIr} PuT
{ SELL, EQuIP} GET OBS = {(W(az) = bk) |bk € BAa; € A}
{ SELL, EQuIP} CARRY
{ BreAK} OTHER In the the shop example, the observation can be:
(b) An interpretation function
_ . _ OBS = {w(Anny) = Stand
Figure 2: A Iat|tu§je functl_on for the example of the shop , w(Benny) = Stand
and its interpretation function.
w(Canny) = Phone
w(Danny) = Get
w(Erny) = Carry
Aa,(Talk) = $Freqr V SNegotiate ¥ SThnerratk ¥ SWatch: w(Frenny) = Walk}
Aa,(Phone) = g, .o, V SNegotiate: . . o
A 4 Diagnosis of Coordination Faults
a7 (Stand) = sBl7 eak N szile v SV{/atch k4 sduard’ . . . .
A, (Walk) = s° V % V 5% A fault in the coordination of a multi-agent system may be the
W‘”C’L Guard * °Equip’ result of a faulty agent(s). Givenld AS D (Definition 8) it is
(C ounter) = sg possible to infer that a fault exists and to generate hypotheses
t % as to the abnormal agents, by checking whether the observe
Ag,(Put) = 8% . to the ab | ts, by check hether the ob d
o actions of the agents satisfy thé AS D.
Aas (Get) = S V $Equip Let us formalize the coordination diagnosis in terms of
Aq, (Carry) = 51 V $Bquip: model based diagnosis:
Aq, (Other) = s, ok Definition 11 (Coordination Diagnosis Problem (CDP)).

Given {A, MASD,OBS} where A is a team of agents

Now that we have a definition of the joint coordination (5) {a;...a,}, M ASD is a multi agent system description de-
and the definition of the interpretation function (7), we canfined overA (Definition 8), andD BS is the set of the actions
define the multi-agent system description (MASD). MASD of the agents (Definition 10), then tkeordination diagnosis
is a set of implications from the normality of the agents to theproblem (CDP)arises when
correctness of the union of their superposition (based on the
joint coordination) and their interpreted states (based on the MASDU{~AB(a;)|la; € A}UOBS - L
interpretation). To define the normality of the agent we de- Given a CDP, the goal of the coordination diagnosis
fine the predicatel B(a;) which represents the abnormality process is to determine a minimal set of abnormal agents
of agenta; (failing): whose selection and subsequent setting ofAti-) clause

Definition 8 (multi-agent system description (MASD)). \évé)#sl?ste(alm;qgfséhdeclgg%igi%?]cgia-;%ggiss .end we define the

Given a set of agent\ = {aj,as,...,a,}, a set of
statesS = {s1,52,...,5,} and a set of actionds3 = Definition 12 (consistency-based coordination diagnosis
{by,bo,...,bet, MASD is a set: (CBCD)). A minimal setA C A such that:

MASD = {~AB(a;) & (N(a;) = g UAa, (br) = §7 ¥ 1) MASD| J{AB(ai)|a; € A} J{~AB(a:)|la; € A— A} JOBS¥ 1L
|S""C SAS” CSAa; € ANb, € B}
In our example, MASD is not consistent with the ob-

This definition enforces the dependency between the pesservation. A diagnosis for this coordination fault can be:
fection, or in terms of model-based diagnosis, the normalityA = {Erny, Frenny}.
of the agents and the correctness of their selected states basedhe goal now is to findA. Consistency-based mini-
on the joint coordination and the interpretation of their statesnal diagnosis is known as NP-hard probl¢de Kleer and
by their actions. Williams, 1987. In particular, Kalech and Kaminka have



C6x8 _ 19%8 _

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQuUIP BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQuUIP

ANNY 0 0 0 0 1 1 0 0 TALK 1 0 1 0 1 1 0 0
BENNY 1 0 0 0 0 0 PHONE 1 0 1 0 0 0 0 0
CANNY 1 0 1 1 0 0 0 1 STAND 1 1 0 0 0 1 1 0
DANNY 1 0 1 1 0 0 0 1 WALK 0 0 0 0 0 1 1 1
ERNY 0 0 0 0 0 0 1 0 COUNTER 0 0 0 1 0 0 0 0
FRENNY 1 0 0 0 1 0 0 0 Put 0 0 0 0 0 0 0 1

GET 0 0 0 1 0 0 0 1

CARRY 0 0 0 1 0 0 0 1

OTHER 1 0 0 0 0 0 0 0

Figure 3: The coordination-matrix representation of the joint
coordination of Figure 1.
Figure 4: The interpretation-matrix for the interpretation

] ] ] ~_ function presented in Figure 2(b).
proposed algorithm to find consistency-based coordination

diagnosis[Kalech and Kaminka, 2005 However, in their .,
paper the coordination is represented by binary constraints
between pair of agents’ states. On the other hand, in this pa-
per we represent joint coordination setting (1) by a non-binaryA

TALK PHONE STAND WALK COUNTER PuT GET CARRY OTHER

. . LT . . NNY 0 0 1 0 0 0 0 0 0

constraint between multi-agent, and (2) by joint coordination sexy 0 0 1 0 0 o o0 0
between multiple states of each_a}gent, rather than_ s_mgle indezn 0 . 0 0 0 oY 0
pendent state. These two qualities enable an efficient repressny 0 0 0 0 0 o o 1 0
sentation of more realistic problems on the one hand, and oA®™"* * ¢ © o ! 0 e oo 0
the other hand they simplify the representation so the diagno-
sis can be found even in linear time k_Jest case, in the numbgr Figure 5: An observation matrix.
of agents and states. In the next section we propose a matrix-
based representation presentefKialechet al, 2007, which
uses as t_he basis for an algorithm for coordination diagnosig,ofinition 15 (observation-matrix). Let A _
in linear time. . {a1,as,...,a,} be a set of agents arfd = {b, by, ..., b}
5 Matrix-Based Representation a set of actions, ambservation-matrix® stands for the
We will represent the models of the coordination, the action®PServation matrix representation:
and the observation by matrices. 1 w(a) = b

Let A = {a1,a9,...,a,} be a set of agents anfl = 0ij = {0 otherwise
{s1,82,...,8m} be a set of states. We represent the joint
coordination of the agents (Definition 5) by a Boolean matrix  Figure 5 presents an example to an observation matrix. The
of ordern x m. rows represent the agents and the columns the actions. Pay

Definition 13 (coordination-matrix). Let E be the environ-  attention that in every row there is exactly a singlesince
ment(A, S). A coordination-matrixC over E is a Boolean every agent is observed in one action.

matrix of ordern x m (C € B™*™) provides: 6 Diagnosis Procedure

cij = {é zgh;;i? A coordination fault occurs when the current agents’ posi-

. tions (Definition 2) do not match the expected coordination
Given a set of state§ = {s1,s3,...,sn} and a set of gijven by the coordination-matrix (Definition 13). Thus, if we
actionsB = {b1,bs,...,bs}, we can represent the interpre- know the current positions of the agents, we can say for sure
tation of the actions to the states (Definition 7) by a Booleanyhether the system has a fault or not. The exact state of each
matrix of order? x m. agent is known only to the agent itself. However, its action is

Definition 14 (interpretation-matrix). Let S be a set of gpservable. By observing its current action, we can infer the
states and3 a set of actions, amterpretation-matrix/ from  giate in which the agent is found. This could be done using
Bto S is a Boolean matrix of ordet x m (I € B*™) pro-  the formula:
vides:
1 s A(b;
b = {o ;ih:rwiéz : Q=06-1 1)

Figure 4 presents the corresponding interpretation-matrix Where,© is the observation matrix antdis the interpreta-
to the interpretation function presented in Figure 2(b). Theion matrix. < is ann x m Boolean matrix. Each elemejin
rows represent the actions and the columns represent thiew ¢ represents whether it is possible that ageris now in
states. For example, the second row says that once an agestates; (1’ entry) or not (‘0" entry). Note that each element
is observed doindPHONE, then its state is one dBREAK, w;,; is the sum of multiplying each elemehtn row i of © by
NEGOTIATE}. elementk in columny of I. This multiplication, of course, is

The last building block we define is the observation-matrix,'1’ iff both of them are ‘1’. Since each row i® has exactly
which is parallel to the observation Definition (10) in the one element which is ‘1’, the value of each elemer®iwill
model-based diagnosis formulation. be at most ‘1.



v =06.1= In order to prove that the algorithm finds complete and

sound diagnosis we will prove that all-zero row entails the
BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP abnorma”ty of the agent represented by that row and vice
! 0 0 versa. To prove this statement we should prove first two log-
ical lemmas related to the consistency of the sets given by
the superposition and the interpretation functions. To sim-
plify the proof we define a set of stat€s= {s1,s2...5,},
and two subsets’, 57 C S (S' # 0, S” # 0), whereS’
represents the set given by the superposition functionsénd
represents the set given by the interpretation function. We
define the following statements:

ANNY
BENNY
CANNY
DANNY
ERNY
FRENNY

CoOor Kk~
cooow
cooroO
orroO
coooo
—OOOK K~
—~O0O KK
i =R=N=)

Figure 6: The matrix given by the product between the
observation-matrix and the interpretation-matrix.

R=QAC= 1. 5T : (\/sjes/ 55) A (/\SjES\S/ —s5)
2. ST2 : (\/SJES” Sj) N (/\SJ'ES\S” —|Sj)
BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQuUIP
ANNY 0 0 0 0 0 1 0 0 Lemmal. S'NS" =0= STy ANSTo - L
BENNY 1 0 0 0 0 0 0 . . ,
CANNY 10 1 0 0 0 0 0 Proof: Without loss of generalitydT; = 3s; € S" = true,
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 0 0 0 0 butS'MS” =0 = s; € S\S7,
FRENNY 0 0 0 0 0 0 0 0 STy = 55 = false.

ConsequentlyST) A STy = L. O

Figure 7: The matrix given by boolean ‘and’ operation be-Lemma2. 5’57 # 0 = STy A ST ¥ L
tween the coordination-matrix ands2. Proof: To prove consistency we need to show a truth assign-
ment. Without loss of generality, assurfig .S” = s,
) o = STy = true A STy = true.

For example, Figure 6 presents the_ matrix given by thQDonsequentlySTl AST, ¥ 1.0
product between the observation-matrix (given in Figure 5 h 1 Gi dinati i tation:
and the interpretation-matrix (given in Figure 4). Our obser- heorem L. iven a coordination-matrix representation.
vation may lead us to conclude th@aNNY's state is either F, 1<i<n: Njoyriy =0 AB(a;)
BREAK or NEGOTIATE. Proof:

We can now explain the diagnosis algorithm. Failureis | 5 | _; . AL, rij = 0= AB(a;) (soundness):
defined as a situation wherein none of an agent’s possible as- j=1"14
signed state (according f2) appears on the ‘allowed coordi- Without loss of generality, assumg;_, r1; = 0 and
nation’, designated aS' (the coordination-matrix). In order prove thatAB(aq ).
to examine possible matches we will operate a logical ‘and’ /\}":1 r;=0=Vj: e Awr; = 0 (equation 2).
betweenC and2 in an element-by-element process, to get

the results matrixR"™*™: (@) c1:
i =T(a) =5 C S (5 # 0) (Definition
Tij = Cij N\ Wij (2) - %‘3) _ o — oA
R represents all the agents-assigned combinations that sat- . Tla) = . = o (\/SJES’ 55)
isfy C according to interpreted states by the observation. The (As;es\5 7s5) (Definition 3).
combinations represented iy are all those that agent is (b) wy
found in one of the stateg that match ‘1’ element in rou;. i wi; = Aw(ar)) = S (S” # 0) (equation 1,
Thus, if in each row in R there is at least one ‘1’ element, it Definitions 14, 15).
implies that at least one Combination exis_ts. In this case, we i. Aw(@)) = 7 = ST = (V, co sH A
may assume that the agents will be found in one of those joint 1\ (Definition 7 I J
states. If, howevelR defines an all-zero row exists, then the (/\SjeS\S” ~s;) (Definition 7).

assigned agents’ states are definitely forbidden. Inthis case,a By (a) and (b)vj : ¢; iAW =0=>S5NS" =0
failure alert is warranted, and the diagnosis is that the agents By Lemma 1:= ST /7\ST ,_ n
that are represented by these all-zero rows are abnormal. This ) ! 2

operation takes onl@) (nm) operations (counting the ‘1's for Consequently by Definition 815 (a1).

m elements on each @t’s n rows). 2.%i,1<i<n: /\;”:1 ri; = 0= -AB(a;) (complete-
Returning to the shop example, matrkin Figure 7 is ness): ‘

the result of an element-by-element ‘and’ operation between  jithout loss of generality, assumeg, # 0 and prove

C (Figure 3) and (Figure 6). In this coordination-matrix, that—AB(ay). ’

the two bottom lines, representiifRNY and FRENNY, are
all-zero. No desired combination can explain their actions.
A failure has been detected and the diagnosiiis= (@) c1a:

{Erny, Frenny}. i. 11 =1= s11 € I'(ay) (Definition 13).

ri,1 # 0= c1,1 Awr,1 = 1 (equation 2).



i. N(a;) = 8 = ST} = (\/sjes, sjl) A two sets of coordinatiol®; U Cy, means that the set of al-
(A , —sh). lowed combinations in the system is the union of all the com-
s €S\ T binations defined by; and all the combinations defined by

ii. =siecs C>. This operator may be extended to expressions of the kind
(b) w1,1+ ciucly U --- UCP.
i wii=1= s, € Awla)) =S (equation There may be cases in which the usetofis more difficult
1, Definitions 14, 15). for the designer to describe the system. Thus, we present the

second basic operator, ‘and’, which is notated by®a'‘ The

o _ 99 _ 1
ii. AMw(ar)) = 57 = STz = (Vs;'es” SJ') A expressiorC, M C, represents all the combinations that are

(As, 505 7s5) (Definition 7). found in the intersection of those that are defined’hyand
iii. = sleg” those defined by’,. In fact, one might notice that any ex-
pression of the fornC’; M C5, may be reduced to an equiva-
From (a) and (b)S' N S” # 0 (s1 € (SN S7)) lent coordination-matrix, that represents exactly the same set
By Lemma 2:= ST, A STy ¥ L of combinations. This is the coordination-matrix that is the

result of a logical-and in an element-by-element fashion be-
tweenC; andCs.

In order to detect failures by observations only, we define We call this extended structure of combined coordination-
two policies of decisiofKaminka and Tambe, 2000 The  matrices using operatorsrale. An example for a complex
optimistic policyassumes that as long as the system is notule is:

proven to be faulty, no fault should be reported. Using thisp — o || (¢, L C5) M (Cy U C5)) U Cg U (Cr 1 Cs 1 Cy)
policy, one can never get a false alarm. If it reports a fault,

then a fault has certainly occurred. The other policy is theBack to the diagnosis problem, to find a diagnosis we should

pessimistic policy This policy reports a fault in the system, compare by ‘and’ing odper:atorb the product matrix of the
unless it is completely confident that no fault has occurredinterpretation-matrix and the observation-matdy @gainst

Using this policy, one can never get to a situation of an uniN€ coordination-matrix. Testin§ against a ruler =

reported fault. We have adopted here an optimistic policyC! H €2 U -~ U Cy, is simple. One must perform the all-
thus in matrix(2 we inferredall the possibilities of the states 270 row test presented earlier for each oftfeordination-
that could be taken by the observed agents. By generating tffBatrices. That is, for eacty, in R, calculating the result
result matrix () we check if at least one of the interpreted Matrix i by logically “and’ing ©2 with Cj, in an element-
joint—states of the observed agents is consistent with the d&Y-element fashion, and then check whetligrhas all-zero
sired coordination. row. Due to the nature of the operatar”, it is enough to

Sometimes, an agent cannot detect the exact action of o@’@”fy tr;a(tjat Leasthone Such;; has no dqll—ze(rjo row, in ccj),rder
of its teammates. In this case, we can still provide a pario conclude that the agents are coordinated. For‘and" opera-
tial solution; the agent may assume that the teammate row r, on the oth;er Ir|1and, (for mstanﬁhldﬂfgg)r;cge abzecrjce of
‘all-ones’ (i.e., its action might be any action in the system). ? pfropterty?] a -zc;ro rgzv Imurs],t tOI zoootj 1 ar} Q'fh
Although in this case we are likely to miss faults, we still h'n hac dwe avesl (?[W aﬁc te a i d".’m ?gorl ;n
keep the property of the optimistic policy, that is, report novt\: Ich re Hces ab_ru ed Ea coflection cooTrhma |0n-ma|(rj|cdes
false-alarms. If the system principally allows communicationt'at aré all combined by an or operator. Thus we could de-

between agents, the agent may better solve the problem %/?Ct failure by ‘anding’ each one of the coordination-matrices

explicitly communicate agents whose action are not observ' ith 2, and check all-zero rows in the result matrices.
able for it. For the diagnosis purpose we should provide a set of ab-

normal agents. Based on the diagnosis definition we have
7 Complex Coordination presented here, an indication to a fault is once all the
coordination-matrices produce all-zero rows in the corre-
§bondingR matrices. Then each one of the matrides
produces a diagnosis. For recovery purpose we prefer to ex-
plore minimal diagnoses. A minimal diagnosis is a diagnosis
which no proper subset of it is a diagnosis. To this end, during
the diagnosis process we prune all the diagnoses that are not
Iminimal. In order to model complex rules in terms of model-

Consequently by Definition 8:AB(a;).0

One of the advantages of the matrix representation is the po
sibility to define complex coordinatioi&alechet al., 2007.
One coordination-matrix will usually not suffice for a full de-
sired coordination definition. Thus, the coordination-matrix
we introduced earlier (Definition 13), may only partially de-
fine the allowed combinations in a desired coordination. Fo

E;’tEa:\ln,\?s’ir:nGtS:RthgSteﬁ?g&%ﬁﬁ;ﬁ"ﬁm;ﬁ&l%rgiplﬁfsg) based diagnosis we should define theand M operators.
Y, 9 Intuitively, since our model is defined in first order logic, we

does not deal with this new relation. Moreover, we cannot alol%an define these operators using the regular logical operators

another state t@’, by just changings 7 (FRENNY, GUARD) L2 :
from ‘0’ to ‘1’. This would allow undesired combinations, ga%ne?A' A formal representation is beyond the scope of this

such a€ERNY andFRENNY guarding simultaneously. In this

section we will briefly present the complex coordinations and® Summary and Future Work

then focus on the diagnosis aspects. In this paper we presented formalization for diagnosing coor-
The most important operator used to join a fewdination failures in multi agent systems, in terms of model-

coordination-matrices is the ‘or’, notated asl°. Defining based diagnosis. In contrast to previous work, the model



presented in this paper is more efficient and reflects the real using distributed csp algorithms. American Association
world, by defining non-binary constraints between the agents for Atrtificial Intelligence (AAAI-06)2006.

and by enabling to gather multiple states in one constraint. ([jKaIechet al, 2007 Meir Kalech, Michael Lindner, and
To solve the diagnosis problem we defined a matrix-based G5 o' Kaminka. Matrix-based representation for coordi-

notation for the fundamental parts of the diagnosis represen- aiiqn fayit detection: A formal approach. Rioceedings

tation, which serves as a general framework for coordination ¢ 1 sixth international joint conference on autonomous

design a_nd definition in multi agent systems. Using this reP-  agents and multiagent systems (AAMAS)?.

resentation, we showed an efficient fault detection and diag- ] ] -

nosis algorithm in a space and time complexity that is Iineagl[Kam'”ka and Tambe, 2000Gal A. Kaminka and Milind

by the number of agents and states. Tampe._ Robust multl-age.n_t teams via socially-attentive
In the future we plan to add partial observations capabili- monitoring. Journal of Artificial Intelligence Research

ties which will find the minimum set of agents that may to- 12:105-147, 2000.

gether provide the full information, or at least the best possi{Kim et al,, 2001 Phil Kim, Brian C. Williams, and Mark

ble information. Combining this with explicit communication ~ Abramson. Executing reactive, model-based programs

among agents may result a system that is cheap in resources,through graph-based temporal planning. Froceedings

yet very reliable. In addition, at the moment our algorithm as-  of the International Joint Conference on Artificial Intelli-

sumes that the coordination among the team members is de- gence 2001.

fined at the beginning and must be consistent along the SY$Krauset al, 1999 Sarit Kraus, Sycara Katia, and Amir

tem lifetime. However, real-world multi-agent systems are Evenchik. Reaching agreements through argumentation: a
dynamic, and the desired coordination may change, so we logical model and implementatiorrtificial Intelligence
plan to extend our algorithm to dynamic coordination. 104(1-2):1-69, 1998

Another interesting field of future research is using prob- ) .
abilistic values for observations, rather than binaries. In thigMatsubareet al, 1998 Hitoshi Matsubara, lan Frank, ku-
way, rather than defining the policy as ‘pessimistic’ or ‘opti-  Miko Tanaka-Ishii, Ituski Noda, Hideyuki Nakashima, and
mistic’, we will be able to define the probability that a fault ~ Koiti Hasida. Automatic soccer commentary and robocup.
has occurred at a given moment. In Minoru Asada, editorthe Second RoboCup Workshop

Acknowledgements (RoboCup-98)pages 7-22, Paris, France, 1998.
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postdoctoral fellowship at the School of Engineering and Ap- ) i ' ? '
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