
A Representation for Coordination Fault
Detection in Large-Scale Multi-Agent Systems

Michael Lindner, Meir Kalech and Gal A. Kaminka∗

The MAVERICK Group
Computer Science Department

Bar Ilan University, Israel
lindnerm@gmail.com,{kalechm, galk}@cs.biu.ac.il

August 2, 2009

Abstract

Teamwork requires that team members coordinate their actions. The
representation of the coordination is a key requirement since it influences
the complexity and flexibility of reasoning team-members. One aspect of
this requirement is detecting coordination faults as a result of intermittent
failures of sensors, communication failures, etc. Detection of such faults,
based on observations of the behavior of agents, is of prime importance.
Though different solutions have been presented thus far, none has presented
a comprehensive and efficient resolution for large-scale teams. This paper
presents a formal approach to representing multi-agent coordination, and
multi-agent observations, using matrix structures. This representation facil-
itates easy representation of coordination requirements, modularity, flexibil-
ity and reuse of existing systems. Based on this representation, we present a
novel solution for fault-detection that is both generic and efficient for large-
scale teams. We demonstrate the modularity of the representation by pre-
senting a reuse of existing systems and by importing other models (e.g.
hierarchical systems) into the new representation. Finally, we extend the
representation to support dynamical aspects of complex systems.

∗This research was supported in part by ISF grant #1357/07.

1

1 Introduction

Autonomous agents within multi-agent systems interact and coordinate to achieve
their goals [8, 5]. The representation of the coordination is a key requirement since
it may influence the complexity, modularity and flexibility of reasoning operations
of the team [28, 12].

One aspect of this requirement is detecting coordination faults. The increased
deployment of robotic and agent teams in complex dynamic settings has led to
an increasing need for coordination faults handling [18, 15, 7, 10]. Coordination-
fault detection does not indicate whether the group is achieving its goals but only
if agent-coordination exists. Detection of coordination faults is essential for a
recovery process (e.g., a negotiation) during which cooperation is reinstated.

A demonstration of the strong need in fault detection is provided in the follow-
ing example, which we use throughout this text. A crew of agents is responsible
for the operation of a shop. In order for the shop to funcion as required, several
conditions must exist. For example, some agents must serve customers; one agent
must always guard; agents might take a break, as long as the other tasks are being
handled, and so on. Each of the agents can choose what to do at any time, accord-
ing to its role. Thus, it is possible that each of the agents is acting legitimately,
and still, the system as a whole is broken. For example, it might happen that the
shop is left unguarded, or that customers are not being served. A fault-detection
mechanism can identify such a case. Then, it is possible to recover the system,
e.g., by forcing one of the agents to immediately start serving customers.

The ability to detect faults is directly affected by the representation of the
coordination. A n̈aive approach, for example, which maintains and reasons about
the whole coordination space is computationally time consuming, and/or takes up
a lot of space [13, 1]. The motivation for this paper is to find a simple, efficient
and modular representation which will enable to represent the coordination easily.

Previous coordination-faults detection methods have adopted an approach of
using a causal-model which describes a pre-defined set of faults, i.e. a set of for-
bidden coordination relations [15, 7]. This approach is not complete, since it does
not guarantee that all the possible faults are pre-defined. In addition, it requires
the designer to spend time on the research of possible faults, rather than focus on
the required coordination. Others are only able to capture specific coordination
faults, such as disagreements [13, 12].

The drawbacks of these approaches are caused by the representation model of
the coordination. On the one hand, works that tried to find a general solution for
the problem [13, 7], provided mechanisms with exponential complexity of time

2

or space. On the other hand, works that tried to overcome the complexity issue,
provided solutions for specific types of faults or for specific team models, e.g.,
hierarchical teams [12]. None of the works have taken a systematic approach
to addressing this challenge. In this work, we suggest a representation that is
general, in the sense that it fits any team model and any type of fault, yet has a
low, polynomial complexity. We do that by modeling the normal behavior of a
team, that is, the permitted coordination among the agents.

We present an efficient Boolean matrix-based approach to represent: (1) pre-
defined coordination and (2) the agents’ states as inferred from their observed
actions. This representation has several benefits. First, it provides an easy and in-
tuitive way to define the coordination between teammates. Second, unlike hierar-
chical structures, which strictly define relations in the organization, our approach
allows flexible and complex relations. For example, under certain circumstances,
it enables the inclusion of an agent in two subgroups. Third, we do not represent
the relations between teammates explicitly, but gather them compactly in matrix
structures. Therefore, this approach is scalable in the number of agents and states.
Finally, the use of a matrix-based representation enables the use of the matrix
operations and yields interesting information about the agents.

This research takes advantage of the fact that many different specific joint-
states might be expressed by one, more general, definition. We use Boolean matri-
ces for this kind of general definition. In order to provide flexibility in the design,
and allow any type of required coordination, we use special operators. Several ma-
trices might be combined using those operators to construct complex coordination
rules. These operators also open the way for an easy reuse of representations of
existing systems as parts of larger systems.

The representation we suggest also facilitates easy definition of dynamic sys-
tems. In these systems, progression of the system at run-time affects its defini-
tions. We introduce two kinds of such dynamics. First, the representation and
evaluation of temporal rules, that dictates the states an agent is allowed to choose.
Second, an efficient definition of dynamic systems, in which the allowed coordi-
nation is changed according to external conditions. Overall, the matrix represen-
tation enables an easy and efficient way to implement functions on team, like plan
recognition, fault detection, diagnosis and other reasoning operations.

To demonstrate the new representation, we will present a fault-detection al-
gorithm based on the matrix representation. The algorithm (described in Sec-
tion 4) uses matrix operations to efficiently find coordination faults. The algo-
rithm can, in many cases, reduce the complexity of detection in large-scale teams
from exponential to polynomial. In the rest of the text we extend the usage of this

3

representation to additional domains and systems. We analytically explore the
computational implications of using this representation, and the failure-detection
capabilities provided by the algorithms presented.

The paper is organized as follows. Section 2 presents related work. In Sec-
tion 3, we present our new representation of the coordination and observations of
others, based on matrices. Section 4 uses this notation to present fault detection
algorithm. An extension of the coordination model for complex systems is pre-
sented in Section 5. An implementation of it in hierarchy models is presented in
Section 6. Section 7 extends matrix-based representation for dynamic systems.
Section 8 summarizes.

2 Related Work

Some works address coordination faults in teams of agents, but most of them do
not consider efficiency aspects for large-scale teams. Other models require a pre-
defined list of all the possible faults which, in terms of coordination fault, grows
exponentially in the number of agents.

The most related work is of Kaminka at al. [13, 1]. They use a behavior-based
approach using a hierarchical model. In a system consisting ofn agents, each with
m possible states, there existO(mn) possible joint states. In this approach, the
designer indicates the ideal state of coordination, by specifying the desired joint
states. The system observes the agents during run-time, and uses plan-recognition
in order to infer their actual joint state. It then verifies that the actual joint state is
indeed a desired one. Kaminka and Bowling [12] and later Kaminka [?] present
a scalable method for such assessment. Our analytical results and formulation
generalize the results in [13].

Based on the hierarchical model, Kalech and Kaminka [11] propose a diag-
nosis for disagreement failures, which is step beyond the fault detection. They
even extend their method to large-scale teams [9]. Unfortunately, the drawback of
all these works is that they require detection of system faults in cases where the
desired joint states are those of perfect agreement. In addition, their hierarchical
representation of the coordination restricts the organizational relations between
the agents.

Williams et al. [31, 14] provide a model for cooperation of unmanned vehicles.
They coordinate these vehicles by introducing a reactive model-based program-
ming language (RMPL). This model is robust and so it could detect faults and
recover. However, their model-based language addresses only small systems.

4

Dellarocas and Klein [15, 2] report on a system of domain-independent excep-
tions handling services. A first component contains a knowledge base of generic
exceptions. A second component contains a decision tree of diagnoses; the fault
detection process is done by traversing down the tree by asking queries about the
relevant problem. A third component is responsible for seeking a solution to the
exception, based on a resolution knowledge base. This approach transfers the
fault-handling responsibility from the agent to an external system, to alleviate the
load on each agent designer (which would now be freed of the responsibility of
implementing an exception-handling system in each agent).

Similarly, Horling et al. [7] use a fault-model of failures to detect and respond
to multi-agent faults. In this model a set of pre-defined possible faults are stored
in acyclic graph’s nodes. When a fault is detected a suitable node is triggered and
according to the fault characters the node activates other nodes along the graph.
The advantage of Horling’s fault-model system over Dellarocas and Klein’s sys-
tem is the use of a learning algorithm that can be employed to maintain structure
as time passes. As with Dellarocas and Klein, in Horling’s work scale-up con-
cerns are not addressed. In addition, their fault-model approach dictates that all
possible faults be analyzed in advance.

Based on the fault-model approach, Pencolé et al. [19] and Lamperti and
Zanella [16] use a discrete-event system [25, 24] to model a distributed system
where the possible faults are modeled in advance. The diagnoser infers unobserv-
able faulty events by computing possible paths in the discrete event system that
match observable events. A common theme in all of these is that they require
pre-enumeration of faulty interactions among system entities. However, in multi-
agent systems, these are not necessarily known in advance since they depend on
the specific run-time conditions of the environment, and the actions taken by the
agents.

Poutakidis et al. [20] provides a method for tracking the progress of conver-
sations using interaction protocols, and detection of some faults, using a Petri-net
representation of the interaction protocols that are expected to take place (rather
than the expected faults as in the techniques discussed above). When protocols
are matched against observations of messages, errors are detected. However, the
representation has been shown to scale poorly with the number of agents [6].

Some works address diagnosis of multi-agent systems which is a related issue
to fault detection, but none of them consider the problem of large-scale teams.
For instance, Fr̈ohlich et al. [4] and Roos et al. [21, 22, 23] suggest dividing a
spatially distributed system into regions, each under the responsibility of a diag-
nosing agent. If the fault depends on two regions the agents that are responsible

5

for those regions cooperate in making the diagnosis. However, the interactions
among system entities are not necessarily known in advance since they depend
on the specific conditions of the environment at runtime, and the appropriate ac-
tions assigned by the agents [17]. It is impossible to address this by keeping all
the possible interactions between the agents; this might increase communication
complexity, especially in large systems, since the number of candidate diagnoses
is exponential in the number of dependencies.

A number of previous works address scalability in multi-agent systems, but
do not consider diagnosis. Scerri et al. [26, 27] address tasks of team coordina-
tion among the members of large teams. Specifically, they developed algorithms
meeting the requirements of large teams for planning, sharing information and
task allocation—but not fault-detection. They achieve the scalability by organiz-
ing all members into an associated network. The associated network is performed
at the initialization and remains static during the execution. In this paper we pro-
pose coordination rules that are dynamically changed.

Durfee [3] discusses heuristic methods for reducing the knowledge that agents
use in coordination. The methods are based on hierarchies and abstractions which
depend on the task environments and collective behavior of the team. Like the
former work, this work also addresses large-scale teams but does not consider the
fault-detection problem.

This paper presents a formalization to represent team coordination based on
matrix structures. This representation enables a systematic approach to coordi-
nation faults detection based on observation and plan-recognition. It utilizes a
model-based approach, wherein the designer specifies only desired joint states,
rather than an abductive approach which defines all possible states of fault. Our
approach also addresses uncertainty that exists due to ambiguity in plan recogni-
tion. We show that we can compactly represent joint states usingO(nm) matrix
order, and thus reduce the potentialO(mn) check to aO(nm) check in many
cases. This could be suitable to large-scale teams.

3 Fundamental Objects

This section presents the basic objects used in multi-agent systems and the re-
lations among them. Before that, we will present some general algebraic nota-
tions we will use throughout the text. Some important structures we use here are
Boolean matrices. We notate a Boolean matrix of orderi× j as a matrix inBi×j.
We define the following logical operators:

6

Definition 3.1 (Boolean matrices logical operators).Let M , N be matrices of
orderp× q over the Boolean space. Then

M ∧N = T ∈ Bp×q, such thattij = mij ∧ nij

M ∨N = T ∈ Bp×q, such thattij = mij ∨ nij

In addition, we will define matrix product, in a similar way to the usual meaning
of it:

Definition 3.2 (Boolean matrices product).Let M ∈ Bp×q, N ∈ Bq×u be two
Boolean matrices, then their productD = M ·N is inBp×u and is defined to be

D : dij =

q∨

k=1

mik ∧ nkj

This is in fact very similar to the usual matrix product, where the scalar product
is substituted by logical-AND and the scalar summation is substituted by logical-
OR.

Now, we can move on to the specific structures of multi agent systems. The
most fundamental entities are theagents. At any moment, each agent is found in a
givenstate. This is a logical, internal representation of the agent status, or belief,
at this very moment. Throughout the next sections, we will refer to the following
sets:

(i) Let A be a set ofn agents,{a1, a2, ..., an}.
(ii) Let S be set ofm states,{s1, s2, ..., sm}.

For example, consider a management system for a shop consisting of the fol-
lowing six agents (we will refer this example as “the shop ”):ANNY the manager,
BENNY the cashier, two sellers —CANNY andDANNY , ERNY the storekeeper
and a guard,FRENNY:
Ashop={ANNY, BENNY, CANNY , DANNY , ERNY, FRENNY}
Agents may be in one of eight possible states:
Sshop={BREAK, IDLE, NEGOTIATE, SELL, INNERTALK , WATCH, GUARD,
EQUIP}
Having the two setsA andS, we can define the environment for a team:

Definition 3.3 (Environment). Let A be a set of agents, and letS be a set of
states. The pairE = 〈A, S〉 is called theenvironmentof A overS.

7

Definition 3.4 (Environmental-space).Let E = 〈A, S〉 be an environment. The
Cartesian productA × S is called theenvironmental spaceof E, and is denoted
E+.

The environmental space is, in fact, the set of all the possible〈agent, state〉
pairs. Any of these pairs may define a single state in which an agent is found, as
we will describe later. A special yet common case is, when the state of an agent
is not defined. In other words, its state can be any of the states. In this case, we
notate its state with the ‘don’t care’ symbol, ‘∅’. For this purpose, we extend the
above to a ‘complete form’:

Definition 3.5 (Complete-environmental-space).LetE = 〈A, S〉 be an environ-
ment. The Cartesian productA×(S ∪ {∅}) is called thecomplete environmental
spaceof E, and is denotedE⊕.

In addition to pairing each agent to one state (or to none of them), we would
like to define a space which allows each agent to be paired with any set of states
(including the empty set). For that purpose, we define the following space:

Definition 3.6 (Complete-environmental-power-space).LetE = 〈A, S〉 be an
environment. The Cartesian productA× (‖S‖) (i.e.,A multiplied by all the sub-
sets ofS) is called thecomplete environmental power spaceof E, and is denoted
E⊗.

Now that we have the definition of the environment and its associated spaces,
we can continue with structures on those spaces. We refer an agent by its state:

Definition 3.7 (Position). Let E = 〈A, S〉 be an environment. A pair〈a′, s′〉 ∈
E⊕ is called apositionoverE.

We could also attribute multiple states to one agent. For example, in case
we are not sure what is the current state of the agent we will refer that agent
superposition:

Definition 3.8 (Superposition). Let E = 〈A, S〉 be an environment. A pair
〈a′, S ′〉 ∈ E⊗ (i.e.,a′ ∈ A andS ′ ⊆ S) is called asuperpositionoverE.

For example, let us refer back to the agents and states presented in the shop .
The pair〈ERNY, GUARD〉 is a position, while〈ANNY, {INNERTALK , WATCH}〉
is a superposition.

Having each agent found in a particular state defines a unique joint-state [13,
1], or coordination, among the agents. In order to save the generic nature of it, we
define the coordination as a function.

8

Definition 3.9 (Coordination). A coordinationfunction over an environment
〈A, S〉 is a function thatpositionseach agent in a particular state or in no state:

γ : A → (S ∪ {∅}) .

If all the agents inγ are mapped to states inS, the coordination is said to befull .
Otherwise—that is, if one or more agents are mapped to the∅— the coordination
is partial.

Coordinations are the essense of multi agent systems. At every moment, each
agent is found in a specific state, which means that at every moment the agents
are found in a specific full coordination. The designer of the system is in charge
of defining the allowed and disallowed coordinations. The set of all allowed co-
ordinations is calledpolicy.

Definition 3.10 (Policy). LetE be an environment. Apolicy overE is a function

ϕ : {coordinations overE} → B

(whereB is the Boolean space). For each coordinationγ over E, the policy
defines whether it islegal(ϕ(γ) = 1), or illegal (ϕ(γ) = 0). We notate the subset
of all legal coordinationsϕlegal, and the subset of all illegal coordinationsϕillegal.

For example, in the shop example above, a legal coordina-
tion is {〈ANNY, WATCH〉, 〈BENNY, SELL〉, 〈CANNY , NEGOTIATE〉,
〈DANNY , BREAK〉, 〈ERNY, GUARD〉, 〈FRENNY, INNERTALK 〉}. How-
ever, the following coordination is illegal: {〈ANNY, WATCH〉,
〈BENNY, SELL〉, 〈CANNY , NEGOTIATE〉, 〈DANNY , BREAK〉, 〈ERNY, SELL〉,
〈FRENNY, GUARD〉}.

While coordination positions each agent in a particular state, we sometimes
need to position each agent in one of a few possible states (based on Definition
3.8).

Definition 3.11 (Supercoordination). A supercoordinationfunction (or s-coord
for short) over some environmentE = 〈A, S〉 is a function

Γ : A → ‖S‖

i.e., it positions each agent in asetof possible states.

9

Γ(a) =

{INNERTALK , WATCH} a = ANNY

{BREAK, SELL} a = BENNY{
BREAK, NEGOTIATE,

SELL, EQUIP

}
a ∈ {CANNY , DANNY}

{GUARD} a = ERNY

{BREAK, INNERTALK} a = FRENNY

Figure 1: A supercoordination function.

We would now like to use an algebraic representation for the s-coords. Moving
to the algebraic realm naturally allows a variety of calculations and manipulations
on those structures, as described later. Assume an agent setA = {a1, a2, . . . , an}
and a state setS = {s1, s2, . . . , sm}. We can represent a supercoordination of the
agents by a Boolean matrix of ordern×m. This matrix represents a combination
of the agents’ superpositions:

Definition 3.12 (Supercombination).Let E be the environment〈A, S〉, where
|A| = n and |S| = m, and letΓ be an s-coord overE. A supercombination(or
s-comb for short)C overE is a Boolean matrix of ordern×m (C ∈ Bn×m). The
supercombination-representation ofΓ provides:

cij =

{
1 sj ∈ Γ(ai)

0 otherwise

Figure 1 presents an example for such a function, and Figure 2 presents its
appropriate s-comb. The rows represent the agents and the columns represent
the states. This representation allows defining multiple constraints between the
agents in the same structure. For example, regarding the two first agents, one
coordination constraint could be “ANNY selects stateINNERTALK while BENNY

selectsSELL”. Another coordination that is represented by this s-comb is “ANNY

selectsWATCH, while concurrently,BENNY selects stateSELL”.
A special kind of supercoordination is one that does not assign any state to at

least one of the agents. In other words, a supercoordination which assigns at least
one agent the empty-set. We call this an ill supercoordination. In the s-comb it
will be represented by a row of zeros.

Definition 3.13 (Ill-supercoordination). Let Γ be a supercoordination function
over some environmentE = 〈A, S〉. ThenΓ is an ill-supercoordinationiff
∃ a ∈ A | Γ(a) = ∅. Using the s-comb representation:∃i, 1 ≤ i ≤
n :

∨m
j=1 cij = 0. S-coords or s-combs that are not ill, are said to bevital.

10

C6×8 =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 1 1 0 0
BENNY 1 0 0 1 0 0 0 0
CANNY 1 0 1 1 0 0 0 1
DANNY 1 0 1 1 0 0 0 1
ERNY 0 0 0 0 0 0 1 0
FRENNY 1 0 0 0 1 0 0 0

Figure 2: The s-comb representation of the supercoordination appears in Figure 1.

The example shown in Figure 1, for instance, is of a vital-supercoordination,
since it positions all agents to non-zero rows (Figure 2).

At any given moment, each agent is in a givenstate. As a result of its state,
each agent takes someaction, in order to fulfill its goal. An action is visible, i.e.
others might observe it. A state is not necessarily related to one particular action.
Rather, it is possible that one of a few given actions will be taken at service of the
same state. In the opposite direction, the same action might be taken at service of
a few different states. We will annotate the actions as a setB = {b1, b2, . . . , b`}.

For example, in the shop we define eight logical states of the agents and
nine actions, which the agents might act upon. StateSELL, for example, is when
an agent is busy with closing the deal with a customer. Positioned at this state,
the agent might act in one of the actionsGET (getting the product off the shelf),
CARRY (carrying it to the customer) orCOUNTER (sitting near the counter). On
the other hand, an agent might alsoCARRY or GET while positioned at state
EQUIP, and not only when positioned inSELL.

When designing a multi-agent system, the designer defines which actions
might be taken by an agent when positioned in each state. This is called the
latitudeof the agent.

Definition 3.14 (Latitude). LetE = 〈A, S〉 be an environment, andB be a set of
actions, thelatitudeof agenta ∈ A is a functionλa : S → ‖B‖.

This function maps, for a given agenta ∈ A, each state to a subset of actions
which the agent is allowed to pick while being in this state. The straight-forward
inverse function ofλa, the functionλ−1

a , would map subsets ofB to elements in
S. While this function is not interesting, we do define a kind of ‘inverse’ to the
latitude function:

11

λ(s) =

{ TALK , PHONE, STAND, OTHER} BREAK

{ STAND} IDLE

{ TALK , PHONE} NEGOTIATE

{ GET, CARRY, COUNTER} SELL

{ TALK} INNERTALK

{ STAND, WALK , TALK} WATCH

{ STAND, WALK} GUARD

{ WALK , CARRY, PUT, GET} EQUIP

(a) A latitude function

Λ(b) =

{
BREAK, NEGOTIATE,

INNERTALK , WATCH

}
TALK

{ BREAK, NEGOTIATE} PHONE{
BREAK, IDLE,

WATCH, GUARD

}
STAND

{ WATCH, GUARD, EQUIP} WALK

{ SELL} COUNTER

{ EQUIP} PUT

{ SELL, EQUIP} GET

{ SELL, EQUIP} CARRY

{ BREAK} OTHER

(b) An interpretation function

Figure 3: A latitude function for the example of the shop , and its interpretation
function.

Definition 3.15 (Interpretation). Let E = 〈A, S〉 be an environment, andB be
a set of actions, theinterpretationof agenta ∈ A is the functionΛa : B → ‖S‖.

Λa of a given actionb, is the set of all states that haveb in their latitude. Given
an action of an agenta′, we interpret its action as one of a few given states, using
this function. Figure 3 presents the latitude and interpretation functions for the
shop example.

Given a set of statesS = {s1, s2, . . . , sm} and a set of actionsB =
{b1, b2, . . . , b`}, we can represent the interpretation of the actions to the states
by a Boolean matrix of order̀×m.

Definition 3.16 (Interpretation-matrix). Let S be a set of states andB a set of
actions, aninterpretation-matrixI fromB to S is a Boolean matrix of order̀×m
(I ∈ B`×m) provides:

iij =

{
1 sj ∈ Λ(bi)

0 otherwise

Figure 4 presents the appropriate interpretation-matrix to the interpretation
function presented in Figure 3. The rows represent the actions and the columns
represent the states. For example, the second row says that once an agent is ob-
served doingPHONE, then its state is one of{BREAK, NEGOTIATE}.

Knowing the exact state of each agent at every time requires that the agent
reports its state any time it is changed. This is, in many cases, infeasible, since
it involves massive communication resources. Our observation-based approach

12

I9×8 =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

TALK 1 0 1 0 1 1 0 0
PHONE 1 0 1 0 0 0 0 0
STAND 1 1 0 0 0 1 1 0
WALK 0 0 0 0 0 1 1 1
COUNTER 0 0 0 1 0 0 0 0
PUT 0 0 0 0 0 0 0 1
GET 0 0 0 1 0 0 0 1
CARRY 0 0 0 1 0 0 0 1
OTHER 1 0 0 0 0 0 0 0

Figure 4: The interpretation-matrix for the interpretation function presented in
Figure 3.

Θ6×9 =

TALK PHONE STAND WALK COUNTER PUT GET CARRY OTHER

ANNY 0 0 1 0 0 0 0 0 0
BENNY 0 0 1 0 0 0 0 0 0
CANNY 0 1 0 0 0 0 0 0 0
DANNY 0 0 0 0 0 0 1 0 0
ERNY 0 0 0 0 0 0 0 1 0
FRENNY 0 0 0 1 0 0 0 0 0

Figure 5: An observation matrix.

suggests looking at the action of each agent. Thus the last building block we
define is the observation.

Definition 3.17 (Observation). Let A = {a1, a2, . . . , an} be a set of agents and
B = {b1, b2, . . . , b`} a set of actions, anobservationis a functionω : A → B,
that maps each agent to a particular action.Θ stands for the observation matrix
representation:

θij =

{
1 ω(ai) = bj

0 otherwise

Figure 5 presents an example to an observation matrix. The rows represent the
agents and the columns the actions. In this matrix, there is exactly one single ‘1’
in every row, since every agent is observed in one action.

After introducing the fundamental entities, we can formally define a whole
multi agent system.

13

Definition 3.18 (System).A systemis a 5-tupleS = 〈A, S, B, λ, ϕ〉, where

• A is a set ofn agents,{a1, a2, . . . , an},
• S is a set ofm states,{s1, s2, . . . , sm},
• B is a set of̀ actions,{b1, b2, . . . , b`},
• λ is a set ofn latitude functions,{λa1 , λa2 , . . . , λan}, and

• ϕ is a policy function over〈A, S〉.
If the latitude functions of all the agents are identical, the system is said to be
homogeneous, and we simply refer the latitude asλ.

A system, thus, consists of all the relevant entities (agents, statesandactions) and
of the logic to which these entities are obliged (latitudeandpolicy).

4 A Case Study — Fault Detection

In the former section we defined a formalism to a matrix-based representation for
team coordination. We defined a supercombination matrix between the agents’
states (s-comb, Definition 3.12), an interpretation matrix for inferring the current
states of the agents by their actions (Definition 3.16) and an observation matrix
which maps between the agents and their current observed actions (Definition
3.17). In this Section we will present a case study, fault detection, in order to
show the benefits of such representation.

A coordination fault occurs when the current agents’ positions (Definition 3.7)
do not match the expected coordination given by the policy (Definition 3.10).
Using Definition 3.12, we can represent the policy using a Boolean matrix, say,C.
Thus, if we know the current positions of the agents, we can say for sure whether
the system has a fault or not. The exact state of each agent is known only to the
agent itself. However, its action is observable. By observing its current action,
we can infer the state in which the agent is found. This could be done using the
formula:Ω = Θ ·I (Θ is the observation matrix andI is the interpretation matrix),
whereΩ is ann×m Boolean matrix (that is, an s-comb). Each elementj in row
i represents whether it is possible that agentai is now in statesj (‘1’ entry) or not
(‘0’ entry). Note that each elementωi,j is the sum of multiplying each elementk
in row i of Θ by elementk in columnj of I. This multiplication, of course, is ‘1’

14

Ω6×8 = Θ · I =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 1 1 0 0 0 1 1 0
BENNY 1 1 0 0 0 1 1 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 1 0 0 0 1
FRENNY 0 0 0 0 0 1 1 1

Figure 6: The s-comb given by the product between the observation matrix and
the interpretation matrix.

iff both of them are ‘1’. Since each row inΘ has exactly one element which is ‘1’,
the value of each element inΩ will be at most ‘1’.

For example, Figure 6 presents the s-comb given by the product between the
observation matrix (given in Figure 5) and the interpretation matrix (given in Fig-
ure 4). Our observation may lead us to conclude thatCANNY ’s state is either
BREAK or NEGOTIATE.

We can now explain the fault detection algorithm. A fault is defined as a
situation wherein none of an agent’s possible assigned state (according toΩ) ap-
pears on the ‘legal coordination’ of the policy, designated asC (the policy s-
comb). In order to examine possible matches we will operate a logical ‘and’ be-
tweenC andΩ in an element-by-element process, to get the results matrix,Rn×m,
ri,j = ci,j ∧ ωi,j. Being a Booleann×m matrix,R itself is in fact an s-comb.

R represents all the agents-assigned coordinations that satisfyC according to
interpreted states by the observation. The coordinations represented byR are all
those that positions each agentai in one of the statessj, that match ‘1’ elements in
row Ri. Thus, if in each rowi in R there is at least one ‘1’ element, it implies that
at least one coordination exists. In this case, we may assume that the agents will
be found in one of those joint states. If, however,R defines ill-supercoordination
(Definition 3.13), meaning, an all-zero row exists, then the assigned agents’ states
are definitely forbidden. In this case, a fault alert is warranted. This operation
takes onlyO(nm) operations (counting the ‘1’s form elements on each ofR’s n
rows).

The algorithm is presented in Algorithm 1. It takes two input s-coord
arguments—the policy and the observation. First, it calculates the logical-AND
between them, and assigns the result toR (line 1). Then, it starts searchingR. It
searches all rows from 1 ton (line 2). Within each row, it searches all columns

15

from 1 tom (line 4). Whenever an element of ‘1’ is found, the algorithm breaks
the column search (line 7) and continues to the next row (in line 2). If the col-
umn search ends without any ‘1’ element found, the algorithm returnFAULT(line
11). If the search of the s-comb is finished without finding any all-zero row, the
algorithm returnsNOFAULT(line 14).

Algorithm 1 TestObservation(observation s-coordΩ, policy s-coordC).
Test whetherΩ (the state interpretation of an observation) violates the policy de-
fined inC. ReturnsFAULT if it is, or NOFAULTotherwise. Both input s-coords
are of ordern×m.

1: R ← C ∧ Ω
2: for i ← 1 to n do
3: flag ← false
4: for j ← 1 to m do
5: if rij = 1 then
6: flag ← ture
7: break
8: end if
9: end for

10: if flag = falsethen
11: returnFAULT
12: end if
13: end for
14: returnNOFAULT

Returning to the shop example, matrixR in Figure 7 is the result of an element-
by-element ‘and’ operation betweenC (Figure 2) andΩ (Figure 6). In this s-
comb, the two bottom lines, representingERNY andFRENNY, are all-zero. When
the algorithm finishes searching row 5, no ‘1’ element is found, andFAULT is
returned. This means that no desired combination can explain the agents’ actions.
A fault has been detected.

In order to detect faults by observations only, we define two approaches of
decision [13] (the term in [13] ispolicies rather thanapproaches, but this text
reserves the term for the policy function,ϕ). Theoptimistic approachassumes that
as long as the system is not proven to be faulty, no fault should be reported. Using
this approach, one can never get a false alarm. If it reports a fault, then a fault has
certainly occurred. The other approach is thepessimistic approach. This approach
reports a fault in the system, unless it is completely confident that no fault has

16

R = Ω ∧ C =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 0 1 0 0
BENNY 1 0 0 0 0 0 0 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 0 0 0 0
FRENNY 0 0 0 0 0 0 0 0

Figure 7: The s-comb given by Boolean ‘and’ operation between the desired co-
ordinationC and the interpretation s-combΩ.

occurred. Using this approach, one can never get to a situation of an unreported
fault. We have adopted here an optimistic approach, thus in matrixΩ we inferred
all the possibilities of the states that could be taken by the observed agents. By
generating the result matrix (R) we check if at least one of the interpreted joint-
states of the observed agents is consistent with the desired coordination.

We prove the capabilities of the optimistic approach analytically below. To
prove that Algorithm 1 detects only coordination faults (i.e., never has false pos-
itives), let us prove first that the optimistic approach infers all the possibilities of
the states that could be taken by the observed agents. Formally:

Lemma 1. Suppose we are given an observation matrixI and an interpretation
matrixΘ. If ωij = 0, whereωij is a cell in the product matrixΘ · I = Ω, then this
entails that agentai couldnot take statesj.

Proof: ωij is a result of the vectorial product between thei’th row vector in
matrix Θ and thej’th column vector in matrixI. ωij = 0 implies that for each
k ∈ {1, 2, ...,m} eitherθik = 0 or ikj = 0. If θik = 0 then agentai does not take
the actionbk, thus all the associated states with actionbk in matrix I could not
taken by agentai. If θik = 1 then the associated states withbk could be taken by
agentai, however, sinceθik = 1, ikj = 0, thus statesj could not be taken by agent
ai.2

Based on this Lemma we can prove the soundness of our algorithm. Formally:

Theorem 1. Algorithm 1 is sound.

Proof: To show that the algorithm is sound, we must show that whenever a row
of zeros exists in matrixR, necessarily entails a coordination fault has occurred.

17

Θ6×9 =

TALK PHONE STAND WALK COUNTER PUT GET CARRY OTHER

ANNY 0 0 1 0 0 0 0 0 0
BENNY 0 0 1 0 0 0 0 0 0
CANNY 0 1 0 0 0 0 0 0 0
DANNY 0 0 0 0 0 0 1 0 0
ERNY 0 0 0 1 0 0 0 0 0
FRENNY 1 0 0 0 0 0 0 0 0

Figure 8: An observation matrix used in proof of Theorem 2.

This will mean that the algorithm never reports failures unnecessarily (i.e., never
has false positives.

Without loss of generality, assume the cells in row 1 in matrixR are zero:
∀j ∈ {1, 2, ..., m} r1j = 0 and let us prove that there is coordination fault.∀j ∈
{1, 2, ...,m} r1j = 0 entails that∀j ∈ {1, 2, ..., m} eitherc1j = 0 or ω1j = 0. If
c1j = 0 then we do not expect agenta1 to take statesj, and thus we could not infer
coordination fault. However, based on definition 3.8∃j ∈ {1, 2, ...,m}|c1j = 1,
that says that agentai must take one statesj. ∀j|c1j = 1 ⇒ ω1j = 0. However,
based on the above Lemma,ω1j = 0 entails that agentai couldnot take statesj.
That is a coordination fault.2

We have shown that algorithm 1 is sound, meaning, a row of zeros in matrixR
necessarily entails coordination fault. However, it is not complete. In other words,
it is possible that although there is a coordination fault, matrixR does not contain
a row of zeros.

Theorem 2. Algorithm 1 is not complete.

Proof: To prove the incompleteness of the algorithm it suffices to present a
counter example in which a failure occurrs, yet the a row of zeros does not exist
in matrixR.

Assume the coordination matrixC as in Figure 2, but the actual states taken
by the agents are{〈ANNY, INNERTALK 〉, 〈BENNY, BREAK〉,〈CANNY , BREAK〉,
〈DANNY , NEGOTIATE〉,〈ERNY, WATCH〉, 〈FRENNY, INNERTALK 〉}. Obviously,
this case contains a coordination fault since agentERNY takes stateWATCH. As-
sume the observation matrix shown in Figure 8. The product matrixΩ is presented
in Figure 9 and the result matrix in Figure 10. There is no row of zeros inR al-
though we set a case with a coordination fault, thus this algorithm is incomplete.2

18

Ω6×8 = Θ · I =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 1 1 0 0 0 1 1 0
BENNY 1 1 0 0 0 1 1 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 1 1 1 1
FRENNY 1 0 1 0 1 1 0 0

Figure 9: The s-comb given by the product between the observation matrix and
the interpretation matrix, used in proof of Theorem 2.

R = Ω ∧ C =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 0 1 0 0
BENNY 1 0 0 0 0 0 0 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 0 0 1 0
FRENNY 0 0 0 0 0 1 0 0

Figure 10: The s-comb given by Boolean ‘and’ operation between the desired
coordinationC and the interpretation s-combΩ, used in proof of Theorem 2.

19

The theorems above generalize previously proven theorems in [13], which dis-
cussed the optimistic policy for the case of detecting failures in a specific type of
coordination—agreement. In the earlier results, however, the agents could detect
failures only in the case where they agree on a specific plan to be selected by all
team-membrs. Thus the earlier work has in fact touched on special cases of the
theorems above.

5 Complex Coordination

In many cases, one s-comb will not suffice for a full policy definition. Thus,
the s-comb we introduced earlier (Definition 3.12), may only partially define the
legal coordinations in a policy. For instance, in the the shop example, assume
ERNY could replaceFRENNY in GUARD duty. The s-comb in Figure 2 does not
deal with this new relation. Moreover, we cannot add another state toC, by just
changingc6,7 〈FRENNY, GUARD〉 from ‘0’ to ‘1’. This would allow undesired
combinations, such asERNY andFRENNY guarding simultaneously. Hence, we
must provide a general notation that allows the definition of multiple types of
coordination. The idea is to extend the policy so that it consists of more than one
s-comb, without becoming exponentially complex.

5.1 S-Combs Operators

The most important operator used to join a few s-combs is the ‘or’, notated as
‘ t ’. Defining two sets of coordinationsC1 t C2, means that the set of allowed
combinations in the system is the union of all the combinations defined byC1 and
all the combinations defined byC2. As long asΩ satisfies the property of being
vital (Definition 3.13) witheitherC1 or C2 (or both, of course), there is no fault.
This operator may be extended to expressions of the kindC1 t C2 t · · · t Cp.

We call this extended structure of combined s-combs using operators arule.
Testing an observation s-combΩ against a ruleR = C1 t C2 t · · · t Cp is sim-
ple. One must perform the ill-supercoordination test presented earlier for each
of thep s-combs. That is, for eachCk in R, calculating the result matrixRk by
logically ‘and’ing Ω with Ck in an element-by-element fashion (mathematically:
Rk = I ∧Ck). Then, eachRk illness is checked. Due to the nature of the operator
‘ t ’, it is enough to verify that at least one suchRk is a vital s-comb, in order
to conclude that the agents are coordinated. Note that the complexity of such a

20

simple rule, that involves no other operators than ‘or’, isO(nmp), wherep is the
number of s-combs in the rule.

There may be cases in which the use oft is less efficient, or more difficult
for the designer. Thus, we present the second basic operator, ‘and’, which is
notated by a ‘u ’. The expressionC1 u C2 represents all the combinations that
are found in the intersection of those that are defined byC1 and those defined by
C2. In other words, the absence of the illness property forΩ must hold forboth
C1 andC2. In fact, any expression of the formC1 u C2, might be reduced to an
equivalent s-comb, that represents exactly the same set of combinations. This is
the s-combC1 ∧ C2 (a logical-and in an element-by-element fashion betweenC1

andC2). The complexity of computing an ‘and’ rule is alsoO(nmp), wherep is
the number of s-combs in the rule.

Let us motivate the ‘and’ operator by an example. Suppose that our shop,
and an additional shop with a set of six agentsA2 = {a7, a8, a9, a10, a11, a12} and
the same set of states as in our shop, are running successfully and we would like
the two shops to cooperate. The basic coordination rules of both shops are left
untouched. However, now that two managers are available, we add a constraint
saying that one must always supervise the workers, i.e. at least one of the two
managers must be watching (WATCH) at any given time. Using previous methods,
a new model would have been required. S-combs with only ‘or’ operators might
be easier, but will still require redesigning. This is due to the fact that the current
system allows the manager to either watch or talk to its employees. Using the
‘and’ operator substantially simplifies our task.

Suppose that the shops useR1 andR2 as policy rules, correspondingly. The
first task would be to assemble all agents into one system. Since we joint the
agents in the two shops to one large shop, there are now 12 agents. Instead of
using s-combs of order6 × 8 we use12 × 8 s-combs. Then, we must update
definitions from both shops from a6× 8 domain to the new unified one. For this
purpose, we expand each s-comb ofR1 with six new rows, 7 to 12, which are
all filled with ‘1’s. This ensures that the desired coordination of the first shop is
left untouched — since all rows, except for the first six, are defined as ‘all ones’.
The same is done for the second shop rule,R2. In this case, we will expand the
original s-combs in such a way that they will become rows 7 to 12 of the new
s-combs, and fill rows 1–6 with ‘all ones’. Now, we have both shops running on
the same system, each with its original rules. The only thing left is to add the
management restriction. This may be achieved by allowing one of the following
cases:

21

1. When manager 1,ANNY, is watching the shop (WATCH), the other man-
ager, a7, may either watch (WATCH) or talk with its employees (IN-
NERTALK),

2. When manager 2,a7, is watching the shop (WATCH), the other man-
ager,ANNY, may either watch (WATCH) or talk with its employees (IN-
NERTALK).

This is expressed by two s-combs; the first is

M12×8
1 =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 0 1 0 0
BENNY 1 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...
...

FRENNY 1 1 1 1 1 1 1 1
a7 0 0 0 0 1 1 0 0
a8 1 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...
...

a12 1 1 1 1 1 1 1 1

.

We buildM2 in a similar way. Then, we define the ‘manager rule’ to beRM =
M1 tM2. Finally, we define the rule which merges the rule of our shop (R1)
with the rule of the new shop (R2) and the joint rule of the managers (RM):
Rcooperative= R1 u R2 u RM .

The next section presents an algorithm for calculating this kind of rules.

5.2 Computing Complex Rules

This section presents the general algorithm that tests a coordination rule which
includes ‘or’ and ‘and’ operators against a given s-comb interpretation. The algo-
rithm uses atree representationof the rule. The leaves are the rule’s s-combs, and
the inner nodes are the operators. The algorithm traverses the tree in a bottom-up
fashion and unifies s-combs, reducing its depth. The tree’s depth is incrementally
reduced until it consists of a simple ‘or’ expression that can be easily calculated.

The first phase of the algorithm deals with the logical operators that construct
the rule. The tree reduction is accomplished throughimages. An image represents,
for each node in the tree, the possible combinations that are defined by the sub-
tree whose this node is its root. The image is, in fact, one or more encapsulated
s-combs. However, an image logically represents one node. In this way, we work
our way up from the leaf nodes. The sub-tree of every node is replaced with an
equivalent image.

22

The translation of a sub-tree is quite simple. It begins, recursively, from the
root and follows depth–first until it reaches a leaf. On its way back, it replaces
each node with an image. The manner in which a node (sub-tree) is translated
into an image depends on the node type. Since the sub-tree replacement is done
during the depth–first backtracking, the node’s offspring are already guaranteed
translation into images. Let us introduce the types of image:

[s-combs:]These are in fact the leaves of the tree; each s-comb node becomes
an image which includes only one s-comb.

[‘Or’ nodes:] Each ‘or’ node is replaced by an image that includes all the
s-combs from the node’s image offspring.

[‘And’ nodes:] An ‘and’ node that has a few image offspring performs ac-
cording to the distribution law. It becomes an image that contains all the ‘and’
combinations between s-combs from each of the offspring. In other words, if a
node hasb images offspring, each consisting ofcb different s-combs, then it will
be replaced with an image that includes

∏b
i=1 cb s-combs. Each of those s-combs

is built of a different combination ofb s-combs, which are logically ‘and’ed in an
element-by-element fashion.

Algorithm 2 presents the reduction procedure of a complex rule tree to one
image of s-combs. The algorithm obtains the root of the tree and recursively
reduce the tree in a bottom-up manner as described above.

Algorithm 2 ReduceTree(nodeN).
1: if N is a leafthen
2: replace s-comb inN with an image that contains the s-comb
3: else
4: for all nodei in children ofN do
5: ReduceTree(i)
6: end for
7: end if
8: if N is an ‘OR’ nodethen
9: replace all offspring images by one imageI, whereI contains all the s-

combs in the offspring images.
10: else ifN is an ‘AND’ nodethen
11: replace all offspring images by one imageI, whereI contains all the com-

binations between the s-combs in the offspring images.
12: end if

In order to demonstrate Algorithm 2, let us refer to the following rule on some

23

s-combsC1 to C9:

R = C1 t ((C2 t C3) u (C4 t C5)) t C6 t (C7 u C8 u C9)

Its tree form is represented in Figure 11. The root has four offspring, two of
which (the first and the third) are simple s-combs. The rightmost is an ‘and’ node
with three simple, s-combs offspring. The second one, is an ‘and’ node, with two
offspring, themselves sub-trees, each consisting of an ‘or’ node and two s-combs
offspring.

C1

C7 C9 C8

C3 C2 C5 C4

C6

Figure 11: The Rule Tree forR.

We show how the algorithm reduces the tree, step by step. The first node is
the leftmost node. It is, in fact, just a simple s-comb. It is therefore replaced by a
simple image node that includes exactly this s-comb.

C7 C9 C8

C6 C1

C2 C3 C4 C5

Figure 12: Rule Tree Reduction – step 1.

In the next stage, the same thing is done to the next leaf (the s-combC2) and
then to its sibling,C3. Later, their parent node (of type ‘or’) becomes an image
that includes both images. The algorithm then continues the same process on the
next sub-tree, and creates an image consisting of(C4, C5) (Figure 12).

24

C7 C9 C8

C6 C1 C2*4 C2*5 C3*4 C3*5

Figure 13: Rule Tree Reduction – step 2.

C6 C7*8*9 C1 C2*4 C2*5 C3*4 C3*5

Figure 14: Rule Tree Reduction – step 3.

Next, we have an ‘and’ node, with two images offspring, each of which
consists of two s-combs. As we have seen earlier, the ‘and’ node is replaced
by an image that includes all possible combinations of{C2, C3} and{C4, C5}.
These are the combinations(C2 u C4), (C2 u C5), (C3 u C4), (C3 u C5), for
short,C2?4, C2?5, C3?4, C3?5 (Figure 13). As we have already mentioned, ‘and’ing
s-combs (u) is in fact identical to an element-by-element ‘and’. Hence, each
of the expressionsCx?y is one s-comb. During the next stage, the node ofC6 is
replaced by an image with only this s-comb. Then the rightmost ‘and’ node, with
three offspring (C7, C8, C9) is replaced with an image of one s-comb, which is the
result of ‘and’ing those three s-combs —C7?8?9 (Figure 14). At this stage, we
reach the root ‘or’ node, which has four images offspring.

After reducing the whole tree, we are left with one image. This image includes
multiple s-combs. Thus, in fact, it may be treated as a collection of s-combs that
are all combined by an ‘or’ (‘t ’) operator. As we noted earlier, a fault is detected
if for all of them, the result of ‘and’ing withΩ provides an s-comb with an all-zero
row.

This process is done offline, once, after the rule is defined. Therefore, it does
not affect the complexity of the run-time fault detection algorithm itself. This

25

complexity is leftO(nmp), wheren is the number of agents,m is the number of
states andp is the number of s-combs in the reduced tree image. The important
property of this complexity is, that for a given form of rule,p is fixed. Therefore,
for a given structure of rule, the complexity grows linearly in the number of agents
and states in the system. This is unlike other approaches, which are exponential
in the number of agents and states.

In order to compute the best and worst-case complexity of the tree reduction
process in Algorithm 2, we should find the appropriate best and worst-case tree
structures. Letb denotes the branching factor of the tree andh its height, and
prove the complexity of the best and worst case of algorithm 2.

Theorem 3. The best-case complexity of Algorithm 2 isO(bh).

Proof: The complex rule operators have the associativity property:

(C1 u C2) u (C3 u C4) = C1 u C2 u C3 u C4

and
(C1 t C2) t (C3 t C4) = C1 t C2 t C3 t C4

Thus, the best-case is a tree that contains only ‘AND’ or only ‘OR’ operators.
In those cases we can simply reduce the tree by operating the ‘AND’ or ‘OR’
operators between the leaf s-comb nodes. Thus, the best-case complexity isO(bh).
2

Theorem 4. The worst-case complexity of Algorithm 2 isO(bb(h−1)
).

Proof: To compute the worst-case, we should clarify again the image compu-
tation in the tree. An ‘OR’ operator just collects all of the s-combs in its offspring
images into one image which isO(|image|b), where|image| represents the im-
age size (number of s-combs in the node). However, the ‘AND’ operator utilizes
distribution law

(C1 t C2) u (C3 t C4) = (C1 u C3) t (C1 u C4) t (C2 u C3) t (C2 u C4)

which includes all the combinations between any of the s-combs in theb offspring
images, which isO(|image|b). Thus, the tree reduction grows polynomially with
‘OR’ nodes and exponentially with ‘AND’ nodes. The worst case tree structure
contains all internal nodes are ‘AND’ except of the last internal level that contains
‘OR’ nodes (see Figure 15). In this structure the tree reduction grows exponen-
tially in the hight of the treeh and in the branching factorb in a bottom-up manner.

26

In particular, each ‘OR’ node in the last internal level includes itsb s-comb leaf
children. Each ‘AND’ node in the above level operates over itsb ‘OR’ node chil-
dren (where each one of them containsb s-comb). The combination size over the
b ‘OR’ children is bb. In the next above level, the ‘AND’ node operates overb
‘AND’ children nodes, where each one of them containsbb s-combs. The number
of combinations is(bb)b = b(b2). Inductively, the complexity continues to grow
exponentially in the levels of the tree, where each ‘AND’ node operates over itsb
children and increases the number of s-combs exponentially inb. Thus, for hight
treeh, the number of s-combs after reducing the tree isbb(h−1)

, so the worst-case
complexity isO(bb(h−1)

). 2

C1 C2 C3 C(3
h

-1) C(3
h

-2) C3
h

r

rr

rr
(h-3)

rr
(h-2)

rr
(h-1)

Figure 15: Worst-case complexity structure.

6 Hierarchical Structures

Following the previous section, one of the benefits of using s-combs is that defin-
ing a desired complex coordination becomes easier. In order to demonstrate that

27

on at least one wide-used system structure we will show, in this section, how to
represent a hierarchical structure [28] using the s-combs concept.

We see a few drawbacks in hierarchical representation, which motivate the use
of s-combs representation:

1. Hierarchical representation treats only agreement between agents, i.e. it
enables to represent plans which should be jointly taken by a sub-team.
However, it does not enable more complex coordination like, for example,
concurrent constraints between agents — two different plans should be op-
erated by two agents concurrently.

2. Hierarchical representation is limited to a strict structure. It does not en-
able, for example, an agent serves in two different sub-teams under some
circumstances.

The use of s-combs, however, facilitates flexible structures with general co-
ordination relations between agents. In addition, while hierarchy is limited to
only representing hierarchical organizations, s-comb can represent any coordina-
tion between teammates including non-hierarchical organizations like in the shop
example.

First, we will briefly define the plan-decomposition hierarchy, and a team orga-
nization hierarchy (these have been fully described in [30]). A team organization
hierarchy is used to represent a monitored agents’ role. All the agents in the sys-
tem construct agroup. This group is divided into one or moresubgroups. Thus,
for example, the group in Figure 16 is divided into four subgroups: theMidfield-
ers, theDefenders, theForwardsand theGoalies. This is a simplified example; a
real system may be further divided intosubsubgroupsand so on, where the leaves
of the structure tree are the agents themselves.

A plan-hierarchy is used to represent a monitored agent’s plan. It is defined
to be a directed connected graph, where vertices are plan steps, and edges signify
the hierarchical decomposition of a plan into sub-plans. Each of those groups
and subgroups has a set of group-plans in which it may be found at any time.
For example, Figure 17, presents a portion of the plan-hierarchy used to monitor
the ISIS’97 RoboCup Simulation team [29]. The whole group always selects the
general planWinGame. Two particular plans are defined for the group, in which
it may select when ‘winning game’ — those arePlay andInterrupt . Each of
those is still a group-plan which is applied to all the agents in the system. Under
those plans, each of the subgroups has its own possible plans. For example, when

28

the system is executing thePlay plan, theForwards’ plan should beAttack ,
while the Goalies’ plan should beDefend . Dividing into subgroup plans, in
this figure, is noted by dashed-line arrows, while solid-arrows represent various
options for the same group or subgroup.

Last, when a subgroup selects some subgroup-plan, the agents which it con-
sists of may be in one or more agent-plans. Still in Figure 17, we can see that
theSimpleAdvance plan is connected to the agent-plans (noted as borderless
nodes)ScoreGoal , KickOut and more. That means that the agents of this
subgroup must be in one of those plans.

ISIS'97

Goalies Forwards Defenders Midfielders

A3 A2 A1

Figure 16: Teams (groups) hierarchy.

WinGame

CarefulDefense

Midfield

Play

Attack

Interrupt

Defend

SimpleAdvance FlankAttack

ScoreGoal KickOut

Figure 17: Plans (states) hierarchy.

Now, we will show a way to translate the hierarchical plan structure into arule
of s-combs (presented in Section 5.1). First, we will present the rationale of the
process, then, the actual algorithm, and, at last, demonstrate that in our specific
example.

29

When examining the meaning of the plan hierarchy, we conclude the following
understandings. Any plan that is ‘split’ to a few plans which are to be appliedon
the same subgroup(represented by a solid edge), provides, in fact, a ‘choice node’.
That is, the subgroup must select only one of the split plans. In other words, this
matches theORoperator. On the other hand, any plan that is split to a few plans
where each of those plans is to applied for a different subgroup (represented by a
dashed edge), dictates, in fact, the exact plan in which this subgroup should select,
leaving it no choices. In other words,all the split nodes must be executed (each
by a different sub-team). This matches theANDoperator. At last, anyagent-plan
(noted here as a borderless node) should be applied to each of the agents in the
sub-team that points to this plan.

It is worth to mention, that a subgroup node which points to agent-plans is
in fact equivalent to a more expressed form, which treats each agent as a one-
agent-subgroup. Each of those agents is allowed to be (in service of the particular
subgroup-plan) in one of the pointed agent-plans. This situation may be defined
by a single s-comb, in which for all the agents in this subgroup only the pointed
agent-plans are on (‘1’), and for all other agents,all the plans are on (rows of ‘all
ones’—that means ‘don’t care’). The algorithm itself appears in Algorithm 3.

The first line of the algorithm starts a loop over all the nodes in the tree. For
each of those node, the type of node is being checked, and an action is taken in
accordance. Line 2 detects choice nodes — nodes that are split to several optional
plans for the same group. These nodes are replcaced withORnodes (line 3). Line
4 detects subgrouping nodes — nodes that specify one plan to each sub group.
These nodes are replaced byANDnodes (line 5). Line 6 detects agent-plans nodes.
This nodes define a set of plans for a specific subgroup. Each of these nodes is
replaced by s-combs, in which rows that match the agents in the subgroup, have
‘1’ in the columns that match the allowed states according to the plan. All other
rows are all-ones (line 7). Finally, after all the nodes were replaced, we have a
tree that matches the s-comb rules representation. The algorithm returns that tree
(line 10).

Now, let us demonstrate the algorithm using Figures 17 and 18. The root is
a node which its offspring are still related to the whole group (just like the root
itself), hence it becomes anORnode. Then, theInterrupt and thePlay nodes
are nodes which each of their offspring are related to a different subgroup. Hence,
those nodes becomeANDnodes. The nodes in the next levelDefend , Attack ,
Midfield , etc. point to other nodes which are related to the same subgroup.
For example, the nodeAttack is related to the Forwards group, and so are its
offspring, SimpleAdvance and FlankAttack . Hence, all of those nodes

30

Algorithm 3 PlansToRule(plans-treeT).
Return a rule of s-combs representing the given plans-tree.

1: for all nodei in T do
2: if i’s offspring refer to the same group asi then
3: replacei with anORnode
4: else ifi’s offspring refer to different subgroupsthen
5: replacei with anANDnode
6: else ifi’s offspring areagent-plansthen
7: replacei with ans-comb node, in which all the agents of this subgroup

have only the pointed plans ‘1’ while the other plans ‘0’, and all other
agents’ plans are all ones

8: end if
9: end for

10: returnT

becomeORnodes. Last, the nodes in the next level e.g.,SimpleAdvance point
to agent-plans. Hence, we should replace them with an equivalent s-comb. For
example, the s-combCSimpleAdvance has the value of one for the relevant sub-
team members (the ‘forwards’, which includesA1, A2 andA3) only in the plans
of ScoreGoal andKickOut (and possibly for other pointed plans). For each
agent of other teams the s-comb includes ‘all ones’ rows. The rule tree is presented
in Figure 18.

CSimpleAdvance

Figure 18: Rule tree.

31

7 Adding Dynamics

Until this point we defined the states in which each agent is found at a given time.
A more complex system may define ‘dynamics’ rules. In this section we will
examine two possible extensions to the system, that relate to that aspect. These
are:

Temporal rules: Adding rules that restrict the set of states an agent might choose
according to its current state.

Dynamic policies: Allowing the policy to be changed according to environmen-
tal conditions.

The next sections explain these topics in details.

7.1 Temporal Rules

A temporal rule is a rule that further restrict the latitude of the agents’ states, by
defining allowed ‘transitions’ from one state to another. That means, that the set of
states to which an agent might position itself at timet + 1 depends on its position
at timet. The transition, thus, is a function that maps each state to a set of states,
or, in other words, to a superposition:

Definition 7.1 (Transition function). LetS = 〈A, S, B, λ, ϕ〉 be some system. A
transitionoverE is a function

τ : S → ‖S‖.
The transition lets the agent latitude of choosing certain states to move to (unless
consists of one state exactly). However, it clearly defines which states might be
chosen and which might not. For example, in the shop system, we may define
such rules as:

• An agent maySELL only afterNEGOTIATE.

• An IDLE state will not take place after aBREAK.

In fact, each such rule can be broken down to the most fundamental rules: Either
can statesj be chosen aftersi (that is,sj ∈ τ(si)) or it cannot (sj /∈ τ(si)).

We may define as many asm2 Boolean rules of this kind; from each state to
each state. Algebraically, we represent the transition function using atransition
matrix:

32

M8×8 =

from\to BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

BREAK 1 0 1 0 0 1 1 1
IDLE 1 1 1 0 0 1 1 1
NEGOTIATE 1 1 1 1 1 1 1 1
SELL 1 1 1 1 0 1 1 1
INNERTALK 1 1 1 0 1 1 1 1
WATCH 1 1 1 0 1 1 1 1
GUARD 1 1 1 0 1 1 1 1
EQUIP 1 1 1 0 1 1 1 1

Figure 19: State transition matrix.

Definition 7.2 (Transition matrix). LetS = 〈A, S, B, λ, ϕ〉 be some system with
a transition functionτ defined on it. Thetransition matrixis a Boolean matrixM
of orderm×m (wherem = |S|), such that

mij = 1 ⇐⇒ sj ∈ τ(si).

In other words, ifmij is 1, it means that statesj can followsi. If it is 0, thensj

can never be chosen aftersi.

Thus, each rowi in this matrix actually representsτ(i). An example to such a
transition matrixis given in Figure 19. This matrix, in the shop system, includes
the two rules presented above, as well as few others. For instance, in this matrix,
m1,2 = 0, which means thats2 (IDLE) can never be taken afters1 (BREAK).

Having the transition matrix, we can predict the states that an agent might
choose. If we know that an agent is currently positioned at statesi, then its next
position must be inτ(si). We do not always know the exact position of the agent.
Instead, we assume it is superpositioned in one of few possible states. Thus, if the
agent is superpositioned in eithersi or sj, then its next position must be either in
τ(si) or in τ(sj). In other words, it must be inτ(si) ∪ τ(sj). In the general case,
if, at time t, the agent is superpositioned in some set of statesSt ⊆ S, then its
position in timet + 1 must be in

⋃
sk∈St

τ(sk).

Using the transition matrix, we can easily calculate this algebraically. The super-
position of an agent at timet might be given as a Boolean vector~vt of orderm,

33

(wherem is the number of states inS) in which vi represents whethersi belongs
to the superposition (vt

i = 1) or not (vt
i = 0). By multiplying it in M , we get

a Boolean vector of orderm that represents the set of states in which the agent
might be superpostioned att + 1:

~vt ·M = ~vt+1.

To understand this equation, recall the way we defined the Boolean matrix product
(see Definition 3.2). According to this, theith element in~vt+1 is given by

m∨

k=1

vt
k ∧mki.

The meaning of this is that for the element to be 1, it is enough that there is at least
one suchk that providesvt

k ∧mki = 1. mki is 1 iff transition from statesk to si is
allowed. So if the agent might currently be insk (i.e.,vk = 1) and transition from
this state to statesi is allowed (i.e.,mki = 1), the agent might be insi at t + 1
(vt+1

i = 1). Extending this calculation to the whole system is straight forward.
This provide a prediction of the next possible states:

Definition 7.3 (Prediction supercoordination). Let M be a transition matrix
over some systemS. LetΩt be an s-comb which is the interpretation of the agents’
observation at timet. Theprediction supercoordinationfor the possible states of
the agents at timet + 1 is

P t+1 = Ωt ·M.

The predictionP t+1 is an s-coord that describes all the possible states of the agents
at timet + 1.

Let us now demonstrate a transition matrix in a context of a full system (the
shop domain). Suppose that at timet, an agentak was superpositioned in states
BREAK andIDLE (s1 ands2, accordingly). That means, we know — according to
observation — that it must be positioned in one of those states. The appropriate
row in the s-combΩt will therefore be

Ωt
k =

(BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

1 1 0 0 0 0 0 0
)

Using the transition matrix, we can predict the states to whichak might move.
Intuitively, based on the matrix in Figure 19, we can see the following:

34

• From states1 (BREAK), transition is allowed to all states buts2, s4 ands5

(IDLE, SELL andINNERTALK).

• From states2 (IDLE), transition is allowed to all states buts4 ands5 (SELL

andINNERTALK).

Since we do not know if the agent is currently ins1 or s2, we assume that it might
move to any of the states in the union of the above options. In this case, the union
is all the states buts4 ands5. Mathematically, this is exactly what we will get in
thekth row of the ‘prediction’ productP t+1 = Ωt ·M :

P t+1
k =

(BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

1 1 1 0 0 1 1 1
)
.

At time t + 1, we will have a new observation, which, after interpretation,
will produceΩt+1. Suppose that agentak was observed inTALK . In this case,
it is interpreted as being superpositioned in{BREAK, NEGOTIATE, INNERTALK ,
WATCH} — s1, s3, s5 ands6, accordingly (the interpretation matrix is given in
Figure 4). Thekth row inΩt+1 is therefore

Ωt+1
k =

(BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

1 0 1 0 1 1 0 0
)
.

Now, we have two different indications as for the possible superposition ofak at
t + 1 — the observation and the prediction. Both must exist. That means, the
agnet is superpositioned only in states that are found inbothΩt+1 andP t+1. This
is theresolutionof the possible positions of the agents att + 1. Formally:

Definition 7.4 (Resolution supercoordination).LetS be some environment, with
a transition matrixM defined on it. LetP t be a prediction s-coord for timet
(based on observations att − 1), and letΩt be an observation s-coord of the
agents’ states at timet. Theresolution s-coordof the agents at timet is given by

Rt = Ωt ∧ P t.

Thus, an elementrt
ij = 1 means that at timet, agentai might be positioned in

sj, accoording to its actionand according to prediction from its former action at
time t− 1. Otherwise,rt

ij will be 0. In our example, thekth row ofRt+1 will be

Rt+1
k =

(BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

1 0 1 0 0 1 0 0
)
.

35

In this case, the transition matrix prediction helps us narrowing the possible su-
perposition to three possible state. If we had used the observation alone, we would
have got four.

Using the above mechanism, we can go one step ahead. Not only can we
predict the next states, but we can also better understand the former states. This is
important, since the coordination of the agents at timet relies on their coordination
at t − 1. If we find that att − 1 there was a fault, it might imply that the current
coordination is faulty as well. Remember that using observations does not provide
the exact states of the agents, but only a set of possible hypotheses. Therefore, it
is possible that at timet− 1 there was a fault that we could not detect, according
to theoptimistic approach(Section 4).

For that reason, it is important that when we get new information, we will
re-examine former states. This can help us detecting faults that had occurred a
short time ago. This is important, since this might imply that the cooperation of
the agent is broken, and their current states violate the policy. Re-calculation of
the states int− 1 is done in a very similar way to predicting the states int + 1.

By transposingM , we getMT . This matrix is the opposite ofM , in the sense
that it describes, for each state, what possible states might haveprecededit. In M ,
if mij is 1, it means thatsj might follow si; in this case,mT

ji = 1, which means
that if at some timet an agent is found in statesj, then it is possible that its former
state wassj.

Therefore, similarly to the way we have foundP t according toΩt−1, we can
use the resolution s-coordRt to find the possible states int− 1. This reevaluation
of the states int− 1 is given in the following definition:

Definition 7.5 (Former supercoordination). Let S be some environment, with
a transition matrixM defined on it. LetRt be the resolution s-coord for timet
(based on the observationΩt and the predictionP t). Theformer s-coordF t−1 is
the s-coord

F t−1 = Rt ·MT .

In this s-coord, if an elementf t−1
ij is 1, it means that the states of agentai at time

t imply that it might has been in statej at timet− 1.

Now, we have two indications for the possible states of the agents att − 1.
First, there is the observation at this time, which is the s-coordΩt−1. Second,
there is the former-supercoordination,F t−1. In fact, in most cases, instead of
Ωt−1, we can use the resolution s-coordRt−1, which is based on the predictions
from timet− 2. We can then calculate a better hypothesis of the states att− 1:

36

Definition 7.6 (Bidirectionally evaluated hypothesis).Let S be some system.
Let Rt−1 be a resolution s-coord of timet − 1 (based on observation att − 1
and prediction from the states att − 2). Let F t−1 be a former s-coord of time
t − 1 (based on the resolution s-coord of timet). Thebidirectionally evaluated
hypothesisH t−1 is given by

H t−1 = F t−1 ∧Rt−1.

If we replaceF t−1 andRt−1 by their full definition, we will get the following
expression:

H t−1 = (Rt ·MT) ∧ (Ωt−1 ∧ (Ωt−2 ·M)).

This is why we call it a bidirectional evaluation: For the evaluating of the hypothe-
sis at timet−1, it combines former information (fromt−2) and later information
(from t). This helps us find faults that could not be detected immediately. In the
same manner, the coordination of former times, such ast− 2, t− 3 and so on can
be checked as well.

7.2 Dynamic Policy

In the system definition (Definition 3.18), the policy is defined as a Boolean func-
tion that maps each coordination to ‘legal’ or ‘illegal’. However, we can extend
this to a wider range of system designs. A designer might need a system that
defines different policies for different environmental conditions. Mathematically,
such conditions of the physical environment provide a set of key/value pairs, as
described in the following definition:

Definition 7.7 (Physical environment description).A physical environment de-
scription is a set of key/value pairs, of the form

V =
{〈key1, value1〉, 〈key2, value2〉, . . . , 〈keyg, valueg〉

}
.

It is up to the designer to define the environmental keys and their possible values
in a specific system. For example, a typical environment description of a military
unit that is moving around might be

V = {〈time, 17:34〉, 〈location, NorthEast〉, 〈surface, desert〉} .

In order to have different policies for different environments, the former definition
of the policy must be changed. In Definition 3.10, the policy is defined as

ϕ : {coordinations overE} → B.

Now, we should redefine it, as a function that takes two arguments:

37

Definition 7.8 (Environmental-aware policy). Let EC be the set of all pos-
sible coordinations over some environmentE = 〈A, S〉, and let Vall be the
set of all possible physical-environmental descriptions for a given system. The
environmental-aware policyis a functionϕ, defined as:

ϕ : EC , Vall → B.

For a given coordinationC ∈ EC , and a given descriptionV ∈ Vall, the function
ϕ(C, V) is 1 iff the coordinationC is allowed under the conditions ofV .

In Section 5.1, we define the policy using a rule. In order to let the policy be
aware of different environmental descriptions, this rule is not enough. A possi-
ble solution is to define different rules for different environmental-descriptions.
When trying to find out if a specific coordination is legal or not, the policy will
determine the rule that satisfies the provided environmental description. However,
in this approach, we will have to hold as many rules as the possible environmental
descriptions. If few different descriptions require few different policies, then each
of them will use a different rule. If those rules are similar in most parts, then a
lot of duplicated information will be used. This approach suffers of few major
disadvantages. It requires more space to hold it; it requires more time to define it;
and it is more susceptible to mistakes and inadequate maintenance.

We suggest a different approach for the definition of such an environmental-
aware policy, which we calldynamic policy. We take advantage of the rules pre-
sentation, which is modular by nature. For this, we introduce a new operator:
‘ _ ’ — the conditional operator — in additional to the ‘or’ (t) and ‘and’ (u)
operators. Like any conditional operator, this operator consists of two parts, the
condition and the rule:

[condition] _ Rcondition.

If the logical value of the condition isTRUE (i.e. Boolean ‘1’), then the
rule is calculated. Otherwise, it is ignored. Formally, expressions of the
typeR t ([cond] _ Rcond) or R u ([cond] _ Rcond), will be calculated as
R t Rcond orR u Rcond, accordingly, ifcond = TRUE. Otherwise, the expres-
sions will be calculated as justR.

Let us demonstrate that by an example from the shop domain. In addition to
the common policy of this system, we would like to define a slightly different
policy for the Boxing Day. In this day, the storekeeper and the guard are allowed
to sell, as long as one of them is guarding. From any other aspect, the Boxing

38

Day policy is identical to the common one. For this purpose, we define a simple
environmental description for this domain, which contains the date. Any check
of the legality of a coordination will now be done according to the date. In this
example, the policy for the Boxing Day allows all the common coordinations,plus
those of the ‘Boxing Day Rule’. Therefore, we will use the OR operator (t),
which is equivalent to coordinations union. Let us notate the common policy with
Rcommon, and the rule that allows the storekeeper and the guard to sell asRboxing.
Each of them is a rule that combines several s-combs with differentt and u
operators. The complete policy rule is

Rcomplete= Rcommont ([Date = BoxingDay] _ Rboxing).

For example, assume thatRcommon is (C1 t C2) u (C3 t C4), andRboxing is
C5 t C6 t C7 (where all theCk are s-combs). Then the definition of the com-
plete policy is

Rcomplete= ((C1 t C2) u (C3 t C4)) t ([Date = BoxingDay] _ (C5 t C6 t C7)).

This rule will be calculated differently on Boxing Day than on any other day in
the year.

In the tree representation, we will notate the left-hand side of the conditional
operator — the ‘condition’ — as a node (call an ‘IF ’ node). Its single offspring
is the root of the right-hand rule in the condition. An example for such a tree is
given in Figure 20. In this figure, the root is anORnode. Its right-hand subtree will
always be calculated. Its left-hand subtree will only be calculated if the condition
‘Today = Boxing Day’ isTRUE.

The algorithm for calculating a dynamic policy rule is based on the algorithm
described in Secion 5.2. In that algorithm, the rule tree is searched in a DFS way,
and in the way back from the leaves, each node is being flatten according to its
type. However, in oppose to other nodes, theIF nodes are being calculated in the
first part of the DFS, that is, during the search downwards.

When getting to such a node, its condition is being checked. If it is false, then
this branch of the tree is being completely ignored, as if it is not there. Otherwise,
the offspring of theIF node is directly connected to its parent, instead of theIF .
The DFS then continues as usual.

To summarize, the s-combs rule notation provides a natural way for the defi-
nition of a dynamically-changed policy that is aware to the physical environment.
The complexity of such a rule in the worst case, is identical to this of a static
rule (the worst case assumes that all conditions in the tree areTRUE). However,

39

Figure 20: A schematic view of the dynamic ‘shop’ policy

in practice, some of the conditions are false, which leads to a faster calculation.
This is a good example for the advantage of this notation, which allows reuse and
flexibility.

8 Summary and Future Work

In this paper we presented a new formal approach to team coordination represen-
tation. We defined a new matrix-based notation—the s-combs—which serves as a
general framework for coordination design and definition in multi agent systems.
The s-comb is a compact way to represent multiple agents’ coordination in one
structure. We showed that the matrix-based structure enables an easy and intuitive
way to define flexible and scalable coordination between teammates. In addition,
this structure enables the using of the normal operations and attributes of matrices,
which yields interesting information on the agents. Based on this representation
we presented an efficient observation-based fault detection algorithm. The space
and time needed for this algorithm are mainly dependent on the complexity of the
rule—how many s-combs are involved and in what kind of relations, and not on
the team size.

We presented how the representation of Boolean-matrices rules is modular
and flexible. An example for that was introduced, in the reuse of existing systems.
Another example is the simplicity of importing other system models, such as hi-

40

erarchical team model, into the s-comb representation. The last section extends
the representation by adding dynamical aspects. The representation advantages
are well emphasized in these extensions. Temporal rules are naturally added to
the system, utilizing the algebraic properties of matrices. Dynamic policy can be
achieved by simply adding conditional operators to the rules.

This research is novel in that it presents a general and efficient solution that
eases the design of coordination requirements and allows modularity and reuse of
already existing systems.

In the future we plan to add partial observation capabilities which will find the
minimum set of agents that will together provide the complete information, or at
least the best possible information. Combining this with explicit communication
among agents may result in a system that is cheap in resources, yet very reliable.
In addition, we plan to extend the use of s-comb rules beyond the limit of fault
detection. This representation can be used to allow a wide range of utilities, such
as proactive fault prevention, decision making, fault analysis and system recovery.

References

[1] Brett Browning, Gal Kaminka, and Manuela Veloso. Principled monitoring
of distributed agents for detection of coordination failures. InProceedings
of Distributed Autonomous Robotic Systems 6, pages 319–328. Springer-
Verlag, 2002.

[2] Chrysanthos Dellarocas and Mark Klein. An experimental evaluation of
domain-independent fault-handling services in open multi-agent systems. In
Proceedings of the Fourth International Conference on Multiagent Systems
(ICMAS-00), pages 95–102, 2000.

[3] Edmund H. Durfee. Scaling up agent coordination strategies.IEEE Com-
puter, 34(7):39–46, July 2001.

[4] Peter Fr̈ohlich, Iara de Almeida Mora, Wolfgang Nejdl, and Michael
Schr̈oder. Diagnostic agents for distributed systems. InModelAge Work-
shop, pages 173–186, 1997.

[5] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group
actions.Journal of Artificial Intelligence Research, 86:269–358, 1996.

41

[6] G. Gutnik and G. A. Kaminka. A scalable petri-net representation of in-
teraction protocols for overheaing. InDevelopments in Agent Communica-
tionLNAI Volume 3396, van Eijk, R.; Huget, M. P. and Dignum, F. (Eds),
Springer-Verlag. In press, 2005.

[7] Bryan Horling, Victor R. Lesser, Regis Vincent, Ana Bazzan, and Ping
Xuan. Diagnosis as an integral part of multi-agent adaptability. Tech-
nical Report CMPSCI Technical Report 1999-03, University of Mas-
sachusetts/Amherst, January 1999.

[8] Nicholas R. Jennings. Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions.Artificial Intelligence Journal,
75(2):195–240, 1995.

[9] Meir Kalech and Gal A. Kaminka. Diagnosing a team of agents: Scaling-up.
In Proceedings of Autonomous Agents and Multi Agent Systems (AAMAS-
05), 2005.

[10] Meir Kalech and Gal A. Kaminka. Diagnosis of multi-robot coordination
failures using distributed csp algorithms. InAmerican Association for Arti-
ficial Intelligence (AAAI-06), 2006.

[11] Meir Kalech and Gal A. Kaminka. On the design of coordination diagnosis
algorithms for teams of situated agents.Artificial Intelligence AIJ, 171(8-
9):491–513, 2007.

[12] Gal A. Kaminka and Michael Bowling. Robust teams with many agents. In
Proceedings of Autonomous Agents and Multi Agent Systems (AAMAS-02),
pages 729–736, 2002.

[13] Gal A. Kaminka and Milind Tambe. Robust multi-agent teams via socially-
attentive monitoring.Journal of Artificial Intelligence Research, 12:105–
147, 2000.

[14] Phil Kim, Brian C. Williams, and Mark Abramson. Executing reactive,
model-based programs through graph-based temporal planning. InProceed-
ings of the International Joint Conference on Artificial Intelligence, 2001.

[15] Mark Klein and Chris Dellarocas. Exception handling in agent systems. In
Proceeding of the Third International Conference on Autonomous Agents,
pages 62–68, May 1999.

42

[16] Gianfranco Lamperti and Marina Zanella.Diagnosis of Active Systems.
Kluwer Academic Publishers, 2003.

[17] R. Micalizio, P. Torasso, and G. Torta. On-line monitoring and diagnosis of
multi-agent systems: a model based approach. InProceeding of European
Conference on Artificial Intelligence (ECAI 2004), volume 16, pages 848–
852, 2004.

[18] Lynne E. Parker. ALLIANCE: An architecture for fault tolerant multirobot
cooperation. IEEE Transactions on Robotics and Automation, 14(2):220–
240, April 1998.

[19] Y. Pencoĺe, M.O. Cordier, and L. Roźe. Incremental decentralized diagnosis
approach for the supervision of a telecommunication network.IEEE Confer-
ence on Decision and Control (CDC’02), pages 435–440, December 2002.

[20] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent sys-
tems using design artifacts: The case of interaction protocols. InProceed-
ings of Autonomous Agents and Multi Agent Systems (AAMAS-02), pages
960–967, 2002.

[21] Nico Roos, Annette ten Teije, André Bos, and Cees Witteveen. Multi-
agent diagnosis with spatially distributed knowlege. InProceedings of
the Belgium-Dutch Conference on Artificial Intelligence (BNAIC-02), pages
275–282, 2002.

[22] Nico Roos, Annette ten Teije, and Cees Witteveen. A protocol for multi-
agent diagnosis with spatially distributed knowledge. InProceedings of Au-
tonomous Agents and Multi Agent Systems (AAMAS-03), pages 655–661,
July 2003.

[23] Nico Roos, Annette ten Teije, and Cees Witteveen. Reaching diagnostic
agreement in multi-agent diagnosis. InProceedings of Autonomous Agents
and Multi Agent Systems (AAMAS-04), pages 1254–1255, 2004.

[24] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C.
Teneketzis. Failure diagnosis using discrete-event models.IEEE Trans-
actions on Control Systems Technology, 4(2):105–124, 1996.

43

[25] M. Sampath, R. Sengupth, S. Lafortune, K. Sinnamohideen, and D.C.
Teneketzis. Failure diagnosis using discrete-event models.IEEE Trans-
actions on Automatic Control Systems Technology, 40(9):1555–1575, 1995.

[26] Paul Scerri, Joseph Andrew Giampapa, and Katia Sycara. Techniques and
directions for building very large agent teams. In2005 International Con-
ference on Integration of Knowledge Intensive Multi-Agent Systems, KI-
MAS’05: Modeling, Exploration, and Engineering, pages 79–84, April
2005.

[27] Paul Scerri, Ŕegis Vincent, and Roger Mailler.Coordination of Large-Scale
Multiagent Systems. Springer, October 2005.

[28] Milind Tambe. Towards flexible teamwork.Journal of Artificial Intelligence
Research, 7:83–124, 1997.

[29] Milind Tambe, Gal A. Kaminka, Stacy C. Marsella, Ion Muslea, and Taylor
Raines. Two fielded teams and two experts: A robocup challenge response
from the trenches. volume 1, pages 276–281, August 1999.

[30] Milind Tambe, David V. Pynadath, Nicholas Chauvat, Abhimanyu Das, and
Gal A. Kaminka. Adaptive agent integration architectures for heterogeneous
team members. pages 301–308, Boston, MA, 2000.

[31] B.C. Williams, P. Kim, M. Hofbaur, J. How, J. Kennell, J. Loy, R. Rag-
noand J. Stedl, and A. Walcott. Model-based reactive programming of co-
operative vehicles for mars exploration. June 2001.

44

