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1. INTRODUCTION
A key challenge in multi agent systems is verifying that

all agents obey the system rules at any moment [10, 6]. In
behavior-based systems, each agent is in some ‘state’ at any
moment. The system designer defines what states each agent
might take, according to its teammates states (plans [9, 1]
or policies [8]). Being a distributed system, no single agent
has knowledge of the others. Monitoring for fault detection
must rely on gathering information by communication or
observation. This information is not always accurate [9, 5].
There are various types of approaches for that issue. Some
researches define a-priory the possible failures, and identify
them at run time [7, 4].

Others, which we adopt, prefer to define the allowed be-
havior, and identify exceptions from it [6, 8], in the following
way: (a) Define a policy of the state-combinations agents
are allowed to take; (b) at run time, each agent observes its
teammate, deducing their possible states; (c) then, it com-
pares them to those allowed by the policy and see if: (1) all
the possible states are allowed (no fault); (2) none of them
is allowed (fault); (3) some are allowed and some are not
(possible fault).

Since the overall number of joint states in the system is
mn (number of agents powered by the number of states each
agent might take), the näıve comparison has exponential
complexity in both space and time. Various researches sug-
gests ways for reducing that. In [8], a binary matrix based
policy is used. Each matrix (supercombination or s-comb)
represents the states each agent is allowed to take; a pol-
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icy is defined using a rule of few s-combs—the union of all
the combinations allowed by each of the s-combs. At run
time, the possible-states observation is also given as a bi-
nary matrix. For example, assume a system of three agents
{a1, a2, a3} and four states {s1, s2, s3, s4}. The policy rule ϕ
defines the allowed states, and the observation matrix W—
the possible states at a given moment.
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That means, for example, that if agent a1 takes state s4,
a2 takes s2 and a3 takes s1, their combinations is allowed.
Since this combination is also found in W , it means that the
agents might be in a legal state. However, W also express
the combination of a1 in s4, a2 in s4 and a3 in s1, which
is illegal (i.e., not defined by ϕ). Therefore, we cannot say
whether there is a fault or not. Lindner et al. [8] present
an algorithm that tests whether the system is assured to
be faulty or not in a linear time and space complexity of
O(nm`) (where ` is the number of s-combs in the policy).

2. MOTIVATION
While existing researches suggest efficient algorithms for

finding whether a system is faulty or is assured to be clean
of faults, none provides means for detecting the probability
of a fault where neither of those two unequivocal results are
found. In real world system, dramatically different decisions
might be taken for different values of that probability.

Calculate that probability requires somewhat different in-
put in the first place. Rather than a set of ‘possible states’
per agent (say, as a binary matrix W ), the observation now
must include the probability of each agent to be in each state.
In this text we assume that these probabilities are provided
by a third party (e.g., by fusing the results of few inaccurate
sensors).

A näıve calculation of the fault probability is the sum-
mary of the probability of each of the allowed combinations
(ϕlegal), where each of them is the product of each agent ai’s
probability (expressed as the function θai) to be in the state
dictated by this combination γ(ai). Mathematically:

∑

γ∈ϕlegal

n

∏

i=1
θai(γ(ai)). (1)

Obviously, the time complexity of implementing this equa-
tion is equivalent to the number of legal combinations, which
might be mn in the worst case.
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3. EFFECTIVE PROBABILITY CALCULA-
TION

In order to effectively calculate the probability of a fault
in the system, we suggest a different algorithm, based on
the s-combs policy definition. First, we will provide a way
to calculate the probability of a single s-comb policy.

3.1 Single S-Comb Calculation
Assume a system with a policy ϕ composed of a single s-

comb, C. At run-time, an agent gets an obscured observation
matrix W , representing the probability of each agent to be
in each state at that time. The policy allows each agent ai
to be in any of the states marked ‘1’ in row Ci. Let matrix
H be the result of an element-wise product of C and W :
H = C ∧W . In this matrix, each element hij represents the
probability of agent ai to be in state sj if this state is legal,
or 0 if it is not. The probability of agent ai to be in some
legal state is therefore the summary of all the elements in
row Hi. The product of all agents’ probabilities provides the
overall probability that the system has no fault:

n

∏

i=1

m

∑

j=1
hij (2)

This calculation takes only O(nm) time and space.

3.2 Multi S-Comb Calculation
Calculation of a multi s-comb policy must consider com-

binations that are defined by more than one s-comb in the
policy rule, making them non-independent. In probability
theory, the probability of several non-independent events’
union is given by the inclusion-exclusion principle [2]. In
our case, ‘events’ are s-combs, and we get:
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where HC is the matrix W ∧⋀c∈C R
c (element-wise product

of the ijth elements of the matrix W and all the matri-
ces Rc). The time complexity of this calculation is linear
in the number of agents and states, but is exponential in
the number of s-combs in the policy—O(nm`2`); its space
complexity is linear in all three parameters.

Fig. 1 shows the empiric calculation time of identical sys-
tems using the Näıve Algorithm vs. our S-Comb one. For
the same number of s-combs, increase in the number of
agents or states results in minor linear change of the S-
Combs run time, but in exponential growth in the Näıve
run time. Having more ’1’ elements in the policy s-combs
(’density’, [5]) results in more combinations defined by the
same ` matrices of n ×m. That changes nothing in the S-
Comb run time, but highly increases the Näıve run time.
Only increasing ` affects the S-Comb curve mush more than
the Näıve. In fact, actual run time might be much less than
exponential in many cases, by some tweaking of the calcu-
lations.

4. PLANS
Some researches [9, 1] suggest policies that dictates dif-

ferent allowed states over time, step by step—plans. In our
research, we extend the s-comb policies to allow definition
of such plans, where each stage of the plan is defined by a
single s-comb. We then suggest a continuous algorithm that

Agents States

S-Combs Density

Figure 1: Runtime: Matrix-Based vs. Näıve

calculates the probability of no faults in the system, i.e.,
that all the agents are aligned to the same plan and stage.
It hass time complexity of O(mnd) and space complexity to
O(n(d +m)), where d is the number of all the stages (in all
plans) of the system.
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