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ABSTRACT Previous coordination-failures detection methods have adopted
Teamwork requires that team members coordinate their actions.an approach using a causal-model which describes a pre-defined set
The representation of the coordination is a key requirement since it of faults, i.e. a set of forbidden coordination relations [8, 3]. Ob-
influences the complexity and flexibility of reasoning team—membersviously, this approach is not complete since it does not guarantee
One aspect of this requirement is detecting coordination faults as athat all the possible failures are pre-defined. Others are only able
result of intermittent failures of sensors, communication failures, to capture specific coordination failures, such as disagreements [7,
etc. Detection of such failures, based on observations of the behav-6]. The drawbacks of these approaches are caused by the represen-
ior of agents, is of prime importance. Though different solutions tation model of the coordination. None of the works have taken a
have been presented thus far, none has presented a comprehensi\wstematic approach to addressing this challenge. We, on the other
and formal resolution to this problem. This paper presents a formal hand, adopt a model-based approach by modeling the normal be-
approach to representing multi-agent coordination, and multi-agent havior of a team, i.e. the permitted coordination among the agents.
observations, using matrix structures. This representation facili- We present an efficient matrix-based approach to represent: (1)
tates easy representation of coordination requirements, modularity,pre-defined coordination and (2) the agents’ states as inferred from
flexibility and reuse of existing systems. Based on this represen- their observed actions. This representation has several benefits.
tation we present a novel solution for fault-detection that is both First, it provides an easy and intuitive way to define the coordi-
generic and efficient for large-scale teams. nation between teammates. Second, unlike hierarchical structures,
1. INTRODUCTION which str_ictly define relations in _the organization, our approach a_l-
lows flexible and complex relations. For example, under certain
circumstances, it enables the inclusion of an agent in two sub-
groups. Third, since we do not represent the relations between
teammates explicitly, but gather them compactly (joint coordina-
tion in the same matrix structure), this approach is scalable in the
number of agents. Finally, the use of a matrix-based representa-
tion, enables the use of the matrix operations and yields interesting
information about the agents. To summarize, the matrix represen-
tation enables an easy and efficient way to implement functions on
team, like plan recognition, failure detection, diagnosis and other
reasoning operations.

To demonstrate the new representation, we will present a failure-
detection algorithm based on the matrix representation. The algo-
f rithm (described in Section 4) uses matrix operations to efficiently
find coordination failures. The algorithm does, in many cases, re-
duce the complexity of detection in large-scale teams from expo-
nential to polynomial.

The paper is organized as follows. Section 2 presents related
work. In section 3, we present our new notation to the coordination-
definition and observation modeling, based on matrices. Section 4
*This research was supported in part by BSF grant #2002401. uses this notation to present fault detection algorithm. An exten-

sion of the coordination model for complex systems is presented
in section 5. An implementation of it in hierarchy models is pre-
sented in Section 6. Section 7 extends matrix-based representation
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Autonomous agents within multi-agent systems interact and co-
ordinate to achieve their goals [4, 2]. The representation of the
coordination is a key requirement since it may influence the com-
plexity, modularity and the flexibility of reasoning operations of the
team [10, 6].

One aspect of this requirement is detecting coordination faults.
The increased deployment of robotic and agent teams in complex
dynamic settings, has in turn, led to an increasing need for coordi-
nation failure handling [9, 8, 3, 5]. Coordination-failure detection
does not indicate whether the group is achieving its goals but only
if agent-coordination exists. Detection of coordination failures is
essential for a recovery process during which cooperation is rein-
stated (e.g., a negotiations).

The ability to detect failures is affected by the representation o
the coordination. A aive approach, for example, which maintains
and reasons about the whole coordination space is is time consum
ing and takes up a lot of space. The motivation for this paper is
to find a simple, efficient and modular representation which will
enable to represent the coordination easily.




enables it to detect and diagnose failures. which allows each agent to be paired with as many states as needed.
A similar approach has been presented by Klein and Dellarocas For that purpose, we define the following space:

[8] according to which, each agent is paired with a sentinel. Sen-

tinels report agent-activities to a failure-detection system that uti-

lizes a pre-analyzed coordination failure database. In this method,

as the former, the failure-model approach dictates that all possible

failures be analyzed in advance.

Kaminka at al. 7, 1] use a behavior-based approach using a hi-  Now that we have the definition of the environment and its asso-

erarchical model. In a system consistingrolgents, each with  cjated spaces, we can continue with structures on those spaces. We
m possible states, there exiS{m") possible joint states. Inthis  refer an agent by its state:

approach, the designer indicates the ideal state of coordination, by
specifying the desired joint states. The system observes the agent®€finition 4 (position). Let £ = (A, S) be an environment. A
during run-time, and uses plan-recognition in order to infer their pair(a’,s") € E* is called apositionover E.
Zcégggffénéﬁéatﬁégﬂtizig ;ﬁgfgsmﬁ;t[?] Srcégzlnjtoénstcsé?éafg gt(leweo(zj_ We could also attribute muIFipIe states to one agent. For examplg,
: ! in case we are not sure what is the current state of the agent we will

for such assessment. Unfortunately, their method only enables de- L

X : . N refer that agent superposition:
tection of system failures in cases where the desired joint states are
those of perfect agreement. In addition, their hierarchical repre- Definition 5 (superposition). Let E = (A, S) be an environment.
sentation of the coordination restricted the organizational relations A pair (a’, S’) € E* (i.e.,a’ € AandS’ C S) is called asuper-
between the agents. positionover E.

This paper presents a formalization to represent team coordina-

tion based on matrix structures. This representation enables a sys- FOr €xample, let us refer back to the agents and states pre-
tematic approach to detecting coordination failures based on ob- S€nted in the shop . The pdERNY, GUARD) is a position, while
servation and plan-recognition. It utilizes a model-based approach, (ANNY, {INNERTALK, WATCH}) is & superposition. _
wherein the designer specifies only desired joint states, rather than HaVing €ach agent found in a particular state defines a unique
an abductive approach which defines all possible states of failure. €00rdination among the agents. In order to save the generic nature
Our approach also addresses uncertainty that exists due to ambigu® it: We define the coordination as a function.

ity in plan recognition. We show that we can compactly represent pefinition 6 (coordination). A coordinationfunction over an en-
joint states using)(rnm) matrix order, and thus reduce the poten- vironment(4, S) is a function thapositionseach agent in a partic-
tial O(m™) check to a0 (nm) check in many cases. ular statery : A — S
3. FUNDAMENTAL OBJECTS

This section presents the basic objects used in multi-agent sys-
tems and the relations among them. The most fundamental entities
are theagents At any moment, each agent is found in a gigtate
This is a logical, internal representation of the agent status, or be-
lief, at this very moment. Throughout the next sections, we will
refer to the following sets:

Definition 3 (environmental-power-space).Let £ = (A, S) be
an environment. The Cartesian produttx (]|.S]|) (i.e., A mul-
tiplied by all the subsets af) is called theenvironmental-power-
spaceof E, and is denoted; <.

For example, in the shop example above, an al-
lowed coordination is {{ANNY, WATCH), (BENNY, SELL),
(CANNY, NEGOTIATE), (DANNY,BREAK), (ERNY, GUARD),
(FRENNY, INNERTALK)}.  However, the following coordi-
nation is illegitimate: {(ANNY,WATCH), (BENNY, SELL),
(CANNY, NEGOTIATE), (DANNY,BREAK), (ERNY, SELL),
(FRENNY, GUARD) }.

(i) Let A be asetoh agents{ai,az,...,an}. Let A = {ai,a2,...,a,} be a set of agents and =
- {s1, 82,...,5m} be a set of states. We can represent the position
(i) LetS be setofm states{si, sz, ..., sm} of the agents by a Boolean matrix of ordex m. This matrix rep-
For example, consider a management system for a shop Consist_resents an extended combination of the agents’ positions (e-comb,
. - ) A ; : for short):
ing of the following six agents (hereinafter this example will be
referred as "the shop ")ANNY the managerBENNY the cashier, Definition 7 (extended-combination). Let £ be the environment
two sellers —CANNY and DANNY, ERNY the storekeeper and a (4, 5). An extended-combinatiofor e-combfor short)C' over £
guard,FRENNY: is a Boolean matrix of ordet x m (C € B"*™) provides:
Ashog={ ANNY, BENNY, CANNY, DANNY, ERNY, FRENNY} 1 v(ai) = s
Agents may be in one of eight possible states: cij = {0 otherwise

Sshop={ BREAK, IDLE, NEGOTIATE, SELL, INNERTALK , WATCH, GUARD, EQUIP}
Having the two setsi and.S, we can define the environment for a While coordination positions each agent in a particular state, we
team: sometimes need to position each agent in one of a few possible
states (based on Definition 5).

Definition 8 (supercoordination). A supercoordinatiorfunction
over some environmerff = (A, S) is a function’ : A — ||5]|
i.e., it positions each agent insatof possible states. Representing
it by e-comb provides:

Definition 1 (environment). Let A be a set of agents, and Igte
a set of states. The palf = (A, S) is called theenvironmenbf A
overS.

Definition 2 (environmental-space). Let E = (A, S) be an envi-
ronment. The Cartesian produétx S is called theenvironmental {1 s; € T(ai)
cij = -

spaceof E, and is denoted ™. 0 otherwise

The environmental space is, in fact, the set of all the possible  Figure 1 presents an example for such a function, and Figure 2
(agentstate pairs. Any of these pairs may define a single state presents its appropriate e-comb. The rows represent the agents and
in which an agent is found, as we will describe later. In addition the columns represent the states. This representation allows defin-
to pairing each agent to one state, we would like to define a spaceing multiple constraints between the agents in the same structure.



{INNERTALK, WATCH}
{BREAK, SELL}

a = ANNY
a = BENNY

{ TALK, PHONE, STAND, OTHER} BREAK
{ Stanp }
{ TALK, PHONE}

IDLE
NEGOTIATE

BREAK, NEGOTIATE, { GET, CARRY, COUNTER} SELL
[(a) = { SELL, Eoulp a € {CANNY, DANNY } A =0 Tay INNERTALK
{ STAND, WALK, TALK } WATCH
{GuArD} a = ERNY { STAND, WALK } GUARD
{BREAK, INNERTALK}  a = FRENNY { WaLk, CaRRY, PUT, GET}  EQuIP
(a) A latitude function
) ) ) ) BREAK, NEGOTIATE, TALK
Figure 1: A supercoordination function. INNERTALK, WATCH
{ BREAK, NEGOTIATE } PHONE
{ BREAK, IDLE, }
STAND
BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQuIP WATCH, GUARD
ANNY o 0 o 0 1 | 0 0 A(b) = { { WATCH, GUARD, EQUIP} WALK
BENNY 1 0 0 1 0 0 0 {Sew} COUNTER
c6x8 __CANNY 1 0 1 1 0 0 0 1 { EQuir} PuT
~ DANNY 1 0 1 1 0 0 0 1 { SELL, EQUIP} GET
ERNY 0 0 0 0 0 0 1 0 { SELL, EQuIP} CARRY
FRENNY 1 0 0 0 1 0 0 0
{ BREAK} OTHER

(b) An interpretation function

Figure 2. The e-comb representation of the supercoordination

of Figure 1.
g Figure 3: A latitude function for the example of the shop , and

its interpretation function.

For example, one coordination constraint could(BeiNY selects
stateINNERTALK while BENNY selectsSELL). Another coordi- TALK
nation that is represented by this e-comb(AeuNY could select Srone
WATCH, while concurrentlyBENNY selects statSELL). Joxs WK
A special kind of supercoordination is one that does not assign PuT
any state to at least one of the agents. In other words, a superco- o
ordination which assigns at least one agent the empty-set. We call OTHER
this an ill supercoordination. In the e-comb it will be represented
by a row of zeros.

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQuIP

-
-
-

coco

HOOOOOKR K
cooooorOOQ
coococococor
ORHORO
coocooocooQ
cCoocoOoORKROR
coocoorrROO
ORHRROROOO

Figure 4: The interpretation-matrix for the interpretation
Definition 9 (ill-supercoordination). LetI" be a supercoordina-  function presented in Figure 3.
tion function over some environmefit = (A, S). ThenIis an
il-supercoordinationiff 3a € A | T'(a) = 0. Using the

e-comb representatiofti, 1 <i¢<mn: \/_ c; =0 . . . . .
I= this state. The straight-forward inverse functiomgf the function

The example shown in Figure 1, for instance, is not an il- X! would map subsets d® to elements ir. While this function
supercoordination, since it positions all agents to non-zero rows is not interesting, we do define a kind of ‘inverse’ to the latitude
(Figure 2). function:

At any given moment, each agent is in a giswtate As a result
of its state, each agent takes soaetion, in order to fulfill its goal. Definition 11 (interpretation). Let E = (A, S) be an environ-
An action is visible, i.e. others might observe it. A state is not ment, andB be a set of actions, thaterpretationof agenta € A
necessarily related to one particular action. Rather, it is possible is the functionA, : B — ||S]|.
that one of a few given actions will be taken at service of the same
state. In the opposite direction, the same action might be taken at
service of a few different states. We will annotate the actions as a
setB = {b17 ba, ..., bg}

For example, in the shop we define eight states logical positions
of the agents and nine actions, which the agents might act upon.
State SELL, for example, is when an agent is busy with closing
the deal with a customer. Positioned at this state, the agent might
act in one of the action&EeT (getting the product off the shelf),
CARRY (carrying it to the customer) dZOUNTER (sitting near the
counter). On the other hand, an agent might &s®RyY or GET
while positioned at statBEQuIP, and not only when positioned in
SELL.

When designing a multi-agent system, the designer defines
which actions might be taken by an agent when positioned in each  Figure 4 presents the appropriate interpretation-matrix to the in-
state. This is called thiatitude of the agent. terpretation function presented in Figure 3. The rows represent the
actions and the columns represent the states. For example, the sec-
ond row says that once an agent is observed dBHNE, then its
state is one o{ BREAK, NEGOTIATE}.

Knowing the exact state of each agent at every time requires that

This function maps, for a given ageate A, each state to a  the agent reports its state any time it is changed. This is usually
subset of actions which the agent is allowed to pick while being in infeasible, since it involves massive communication resources. Our

A, of a given actiorb, is the set of all states that hakén their
latitude. Given an action of an agedft we interpretits action as
one of a few given states, using this function. Figure 3 presents the
latitude and interpretation functions for the shop example.

Given a set of stateS = {s1, s2,...,sm} and a set of actions
B = {b1,bs,...,be}, we can represent the interpretation of the
actions to the states by a Boolean matrix of orflerm.

Definition 12 (interpretation-matrix). Let S be a set of states
and B a set of actions, amterpretation-matrix/ from B to S'is a

Boolean matrix of ordef x m (I € B**™) provides:

. 1 sj € A(bi)
tij = :
0 otherwise

Definition 10 (latitude). Let E = (A, S) be an environment, and
B be a set of actions, thiatitude of agenta € A is a function
Aa S — ||B].



TALK PHONE STAND WALK COUNTER PUT GET CARRY OTHER BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQuIP

ANNY 0 0 1 0 0 0 0 0 0 ANNY 0 0 0 0 0 1 0 0
BENNY 0 0 1 0 0 0 0 0 BENNY 1 0 0 0 0 0 0 0
C 0 1 0 0 0 0 0 0 0 C 1 0 1 0 0 0 0 0
00X = 0 0 0 0 0 o 1 o0 0 R = QAC =g o o 0 1 0 0 0 1
ERNY 0 0 0 0 0 0 0 1 0 ERNY 0 0 0 0 0 0 0 0
FRENNY 0 0 0 1 0 0 0 0 0 FRENNY 0 0 0 0 0 0 0 0
Figure 5: An observation matrix. Figure 7: The e-comb given by boolean ‘and’ operation be-
tween the desired coordinationC' and the interpretation e-
comb Q.
BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQuUIP
ANNY 1 1 0 0 0 1 1 0
BENNY 1 1 0 0 0 1 1 0
C 1 0 1 0 0 0 0 0 . . . . . .
e =or=pQ0 | 6 0 o 1 o ° o 1 We can now explain the failure detection algorithm. Failure is
ERNY 0 0 0 1 0 0 0 1 - H H H 9 H H
A o o o o o 1 1 1 defined as a situation wherein none of an agent’s possible assigned

state (according t&) appears on the ‘allowed coordination’, desig-

nated ag” (the desired coordination e-comb). In order to examine
Figure 6: The e-comb given by the product between the obser-  possible matches we will operate a logical ‘and’ betwéeand(2
vation matrix and the interpretation matrix. in an element-by-element process, to get the results maifix;”,

ri; = Ci,j A wij;. Being a Booleam x m matrix, R itself is in

fact an e-comb.

. . . R represents all the agents-assigned combinations that satisfy

observation-based approach suggests looking at the action of eacfy..qrding to interpreted states by the observation. The combina-

agent. Thus the last building block we define is the observation. o represented bR are all those that agent is found in one of

Definition 13 (observation). Let A = {a1,az,...,a,} be a set the states; that match ‘1’ element in rowR;. Thus, if in each row
of agents and3 = {b1, ba, ..., by} a set of actions, anbservation 7 in R there is at least one ‘1’ element, it implies that at least one
is a functionw : A — B, that maps each agent to a particular combination exists. In this case, we may assume that the agents
action.© stands for the observation matrix representation: will be found in one of those joint states. If, howevét,defines
L w(a) = b, !Il—supercoordinat_ion (Definition 9), meaning, an all-zero row ex-
05 = {0 othelrwise / ists, then the assigned agents’ states are definitely forbidden. In
this case, a failure alert is warranted. This operation takes only

Figure 5 presents an example to an observation matrix. The rows O (nm) operations (counting the ‘1's fan elements on each of
represent the agents and the columns the actions. Pay attention?’s n rows).
that in every row there is exactly a singlg since every agent is Returning to the shop example, matidikin Figure 7 is the re-
observed in one action. sult of an element-by-element ‘and’ operation betwég(Figure
4. A CASE STUDY — FAULT DETECTION 2) andQ (Figure 6). In this e-comb, the two bo_ttom Iines_, repre-

In the former section we defined a formalism to a matrix—based SENUNIERNY andFRENNY, are all-zero. No desired combination
representation for team coordination. We defined an extended co-C2 €xplain their actions. A failure has been detected.
ordination matrix between the agents’ states (e-comb—Definition !N order to detect failures by observations only, we define two
7), an interpretation matrix for inferring the current states of the Policies of decision [7]. Theptimistic policyassumes that as long
agents by their actions (Definition 12) and an observation matrix 2 the system is not proven to be faulty, no fault should be reported.
which maps between the agents and their current observed actiond’Sing this policy, one can never get a false alarm. If it reports a
(Definition 13). In this Section we will present a case study, fault @ult; then a fault has certainly occurred. The other policy is the
detection, in order to show the benefits of such representation. ~ Pessimistic policyThis policy reports a fault in the system, unless

A coordination fault occurs when the current agents’ positions It 1S completely confident that no fault has occurred. Using this
(Definition 4) do not match the expected coordination given by the POliCy. one can never get to a situation of an unreported fault. We
e-comb (Definition 7). Thus, if we know the current positions of have adopted here an optimistic policy, thus in méatriwe inferred
the agents, we can say for sure whether the system has a fault OIaII the possibilities c_)f the states that could be taker_1 by the observed
not. The exact state of each agent is known only to the agent itself, 29€Nts- By generating the result matd) (e check if at least one
However, its action is observable. By observing its current action, ©f the interpreted joint-states of the observed agents is consistent
we can infer the state in which the agent is found. This could be With the desired coordination. _ _
done using the formuld2 = ©- I (O is the observation matrix and Sometimes, an agent cannot detgct the. exact acyon of one of its
I is the interpretation matrix), wheg@is ann x m Boolean matrix teammates. In this case, we can still provndg a partial so_lutlo_n; the
(that is, an e-comb). Each elemeirin row i represents whether it~ 29ent may assume that the teammate row is ‘all-ones’ (i.e., its ac-
is possible that agent; is now in states; (‘1 entry) or not (‘0’ tion might be any action in the system). Although in this case we
entry). Note that each elemeant ; is the sum of multiplying each are_llkely to_mlss faults, we still keep the property of tht_a optlmlstlc
elementk in row i of © by elementk in columnj of I. This policy, that is, report no false-alarms. If the system principally al-
multiplication, of course, is ‘1" iff both of them are ‘1", Since each 0WS communication between agents, the agent may better solve
row in © has exactly one element which is ‘', the value of each the problem by.expllcnly communicate agents whose action are not
element in®2 will be at most ‘1". observable for it.

For example, figure 6 presents the e-comb given by the product5. COMPLEX COORDINATION
between the observation matrix (given in Figure 5) and the inter-  One e-comb will usually not suffice for a full desired coordina-
pretation matrix (given in Figure 4). Our observation may lead us tion definition. Thus, the e-comb we introduced earlier (Definition
to conclude tha€CANNY'’s state is eitheBREAK or NEGOTIATE. 7), may only partially define the allowed combinations in a desired



coordination. For instance, in the the shop example, as&Rne rows, 7 to 12, which are all filled with ‘1's. This ensures that the
could replaceFRENNY in GUARD duty, the e-comb in Figure 2  desired coordination of the first shop is left untouched — since all
does not deal with this new relation. Moreover, we cannot add rows, except for the first six, are defined as ‘all ones’. The same
another state t@’, by just changing - (FRENNY, GUARD) from is done for the second shop rufg;. In this case, we will expand
‘0’to ‘1". This would allow undesired combinations, SuchEsNY the original e-combs in such a way that they will become rows 7 to
andFRENNY guarding simultaneously. Hence, we must provide a 12 of the new e-combs, and fill rows 1-6 with ‘all ones’. Now, we
general notation that allows the definition of multiple types of co- have both shops running on the same system, each with its original
ordination. The idea is to extend the e-comb so that it consists of rules. The only thing left is to add the management restriction. This
more than one e-comb, without becoming exponentially complex. may be achieved by allowing one of the following cases:

5.1 E-CmeS Operators . _ 1. When manager JANNY, is watching the shop/N/ATCH), the
The most important operator used to join a few e-combs is the other manager7, may either watchWATCH) or talk with

‘or’, notated as 1. Defining two sets of coordinatio’; U Cs, its employeesIfNNERTALK),

means that the set of allowed combinations in the system is the

union of all the combinations defined lay; and all the combina- 2. When manager 2g~, is watching the shopWAaTtcH), the

tions defined byC>. As long as(2 satisfies the property of none other managerANNY, may either watchWATCH) or talk

ill-supercoordination (Definition 9) witkither C; or C5 (or both, with its employeesINNERTALK).

of course), there is no failure. This operator may be extended to

expressions of the kin@'y L Cs LI --- L C,. This is expressed by two e-combs; the first is

We call this extended structure of combined e-combs using op- BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP
erators arule. Testing an interpretation e-consb against a rule oy o9 9 i 9 oo

R =CiUCyU - - UCpis simple. One must perform the ill—
supercoordination test presented earlier for each op the&eombs.
That is, for eaclC, in R, calculating the result matrik;, by log-
ically ‘and’ing 2 with C in an element-by-element fashion, and
then check whetheRy. is an ill-supercoordination e-comb. Due to ;
the nature of the operator! ’, it is enough to verify that at least “12
one suchRy is not an ill-supercoordination e-comb, in order to We build M in a similar way. Then, we define the ‘manager rule’
conclude that the agents are coordinated. Note that the complexityto beRyr = M1 LU M. Finally, we define the rule which merges
of such a simple rule, that involves no other operators than ‘or’, is the rule of our shopR) with the rule of the new sho{.) and the
O(nmp), wherep is the number of e-combs in the rule. joint rule of the managers{ar): Recooperaive= R1 M Ra M Ras.

There may be cases in which the uselof is less efficient, or The next section presents an algorithm for calculating this kind
more difficult for the designer. Thus, we present the second ba- of rules.
sic operator, ‘and’, which is notated by a1’. The expression 5.2 Computing Complex Rules
C1 N C represents all the combinations that are found in the inter-  This section presents the general algorithm that tests a coordi-
section of those that are defined ®y and those defined b¥-. In nation rule which includes ‘or’ and ‘and’ operators against a given
other words, the absence of the property of ill-supercoordination e-comb interpretation. The algorithm useee representatioof
for 2 must hold forboth C; and Cs. In fact, one might notice the rule. The leaves are the rule’'s e-combs, and the inner nodes are
that any expression of the ford; M C2, may be reduced to an  the operators. The algorithm traverses the tree in bottom-up and
equivalent e-comb, that represents exactly the same set of combi-unifies e-combs, reducing its depth. The tree’s depth is incremen-
nations. This is the e-comb that is the result of a logical-and in an tally reduced until it consists of a simple ‘or’ expression that can

-
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element-by-element fashion betwe€h andC>. The complexity be easily calculated.
of computing an ‘and’ rule is als@(nmp), wherep is the number The first phase of the algorithm deals with the logical operators
of e-combs in the rule. that construct the rule. The tree reduction is accomplished through

Let us motivate the ‘and’ operator by an example. Suppose images Animage represents, for each node in the tree, the possible
that our shop, and an additional shop with a set of six agents combinations that are defined by the sub-tree whose this node is its
Az = {ar,as,a9,a10,a11,a12} and the same set of states as in root. The image is, in fact, one or more encapsulated e-combs.
our shop, are running successfully and we would like the two shops However, an image logically represents one node. In this way, we
to cooperate. The basic coordination rules of both shops are left un-work our way up from the leaf nodes. The sub-tree of every node
touched. However, now that two managers are available, we add ais replaced with an equivalent image.
constraint saying that one must always supervise the workers, i.e. The translation of a sub-tree is quite simple. It begins, recur-
at least one of the two managers must be watchiMgrcH) at any sively, from the root and follows depth—first until it reaches a leaf.
given time. Using previous methods, a new model would have been On its way back, it replaces each node with an image. The man-
required. E-combs with only ‘or’ operators might be easier, but will ner in which a node (sub-tree) is translated into an image depends
still require redesigning. This is due to the fact that the current sys- on the node type. Since the sub-tree replacement is done during
tem allows the manager to either watch or talk to its employees. the depth—first backtracking, the node’s offsprings are already guar-
Using the ‘and’ operator substantially simplifies our task. antied translation into images. Let us introduce the types of image:

Suppose that the shops uRg and R. as coordination rules, [E-Combs:] These are in fact the leaves of the tree; each e-comb
correspondingly. The first task would be to assemble all agents node becomes an image which includes only one e-comb.
into one system. Since we joint the agents in the two shops to a [‘Or’ nodes:] Each ‘or’ node is replaced by an image that in-
one big shop, there are now 12 agents. Instead of using e-combscludes all the e-combs from the node’s image offspring.
of order6 x 8 we usel2 x 8 e-combs. Then, we must update [[And’ nodes:] An ‘and’ node that has a few image offspring
definitions from both shops from@x 8 domain to the new unified performs according to the distribution law. It becomes an image
one. For this purpose, we expand each e-coniR pfvith six new that contains all the ‘and’ combinations between e-combs from



each of the offspring. In other words, if a node Hasmages
offspring, each consisting af, different e-combs, then it will be
replaced with an image that includg$;_, ¢, e-combs. Each of
those e-combs is built of a different combination /ofe-combs,
which are logically ‘and’ed in an element-by-element fashion.

In order to demonstrate, let us refer to the following rule on some
e-combs’; to Cy:

R:C1U((CQUC3)H(C4|_|C5))U06|_|(C7HCS|—|CQ)

Its tree form is represented in Fig. 8. The root has four offsprings, e-comb. During the next stage, the node@f is replaced by
two of which (the first and the third) are simple e-combs. The right- an image with only this e-comb. Then the rightmost ‘and’ node,
most is an ‘and’ node with three simple, e-combs offsprings. The with three offsprings €7, Cs, Co) is replaced with an image of
second one, is an ‘and’ node, with two offsprings, themselves sub- one e-comb, which is the result of ‘and’ing those three e-combs
trees, each consisting of an ‘or’ node and two e-combs offspring. — Cv,s.0 (Figure 11). At this stage, we reach the root ‘or’ node,
which has four images offsprings.

After reducing the whole tree, we are left with one image. This
image includes multiple e-combs. Thus, in fact, it may be treated
as a collection of e-combs that are all combined by an ‘ot! ()
operator. As we noted earlier, a failure is detected if for all of them,
the result of ‘and’ing with2 provides an e-comb with an all-zero
row.

The complexity of rule-tree reducing cannot be described by a
simple formula, and is highly related to the structure of the rule (it
is out of the scope of this paper). However, this process is done
offline, once, after the rule is defined. Therefore, it does not affect
) the complexity of the run-time fault detection algorithm itself. This
_ We show how the algorithm reduces the tree, step by step. The qompjexity is leftO (nmp), wheren is the number of agents; is
first node is the leftmost node. Itis, in fact, just a simple e-comb. It the number of states ands the number of e-combs in the reduced
is.therefore replaced by a simple image node that includes exactly o image. The important property of this complexity is, that for
this e-comb. a given form of rulep is fixed. Therefore, for a given structure
of rule, the complexity grows linearly in the number of agents and
states in the system — unlike other approaches, which are expo-
nential in the number of agents and states.

6. HIERARCHICAL STRUCTURES

Following the previous section, one of the benefits of using e-
combs is that defining a desired complex coordination becomes
easier. In order to demonstrate that on at least one wide-used sys-
tem structure we will show, in this section, how to represent a hier-
archical structure [10] using the e-combs concept.

We see a few drawbacks in hierarchical representation, which
motivate the using of e-combs representation:

1. Hierarchical representation treats only agreement between
agents, i.e. it enables to represent plans which should be jointly
taken by a sub-team. However, it does not enable more complex
coordination like, for example, concurrence constraints between
agents — two different plans should be operated by two agents

e

Figure 11: Rule Tree Reduction — step 3.

Figure 8: The Rule Tree for R.

concurrently.
_ _ 2. Hierarchical representation is limited to a strict structure. It
Figure 10: Rule Tree Reduction — step 2. does not enable, for example, an agent services in two different

sub-teams under some circumstances.

In the next stage, the same thing is done to the next leaf (the E-combs, however, enable flexible structures with general co-
e-combC5>) and then to its siblingCs. Later, their parent node  ordination relations between agents. In addition, while hierarchy
(of type ‘or’) becomes an image that includes both images. The is limited to only representing hierarchical organizations, e-comb
algorithm then continues the same process on the next sub-treecan represent any coordination between teammates including non-
and creates an image consisting 6%, C5) (Figure 9). hierarchical organizations like in the shop example.

Next, we have an ‘and’ node, with two images offspring, each  First, we will briefly define the plan-decomposition hierarchy,
of which consists of two e-combs. As we have seen earlier, and a team organization hierarchy (these have been fully described
the ‘and’ node is replaced by an image that includes all possible in [12]). A team organization hierarchy is used to represent a mon-
combinations of{C>, Cs} and {C4,Cs}. These are the combi- itored agents’ role. All the agents in the system constrigroap.
nations(Cz M Cy), (C2 M Cs), (Cs M Cy), (Cs M Cs), for short, This group is divided into one or mosubgroups Thus, for ex-
C2s4, Ca2y5, Csxa, Csi5 (Figure 10). As we have already men- ample, the group in figure 12 is divided into four subgroups: the
tioned, ‘and’ing e-combs [(1) is in fact identical to an element-  Midfielders the Defendersthe Forwardsand theGoalies Pay at-
by-element ‘and’. Hence, each of the expressiohs, is a one tention, that this is a simplified example, a real system may be fur-



ther divided intosubsubgroupand so on, where the leaves of the At last, anyagent-plan(noted here as a borderless node) should be

structure tree are the agents themselves. applied to each of the agents in the sub-team that points to this plan.
A plan-hierarchy is used to represent a monitored agent’s plan. It is worth to mention, that a subgroup node which points to

It is defined to be a directed connected graph, where vertices areagent-plans is in fact equivalent to a more expressed form, which

plan steps, and edges signify the hierarchical decomposition of atreats each agent as a one-agent-subgroup. Each of those agents is

plan into sub-plans. Each of those groups and subgroups has a setllowed to be (in service of the particular subgroup-plan) in one of

of group-plans in which it may be found at any time. For example, the pointed agent-plans. This situation may be defined by a sin-

Figure 13, presents a portion of the plan-hierarchy used to moni- gle e-comb, in which for all the agents in this subgroup only the

tor the ISIS’97 RoboCup Simulation team [11]. The whole group pointed agent-plans are onl{), and for all other agentsall the

always selects the general plsinGame Two particular plans plans are on (rows of ‘all ones’—that means ' don't care’). The

are defined for the group, in which it may select when ‘winning algorithm itself appears in Algorithm 1.

game’ — those ar@lay andlInterrupt . Each of those is still

a group-plan which is applied to all the agents in the system. Un- Algorithm 1 PlansToRule(plans-treE).

der those plans, each of the subgroups has its own possible plansreturn a rule of e-combs representing the given plans-tree.

For example, when the system is executingRiey plan, theFor- for all nodei in T do '
wards plan should beAttack , while theGoalies plan should be if ’rgpfl’;figi”v'\‘lﬁi raer:‘gé?]g(‘jisame groupathen
Defend . Dividing into sybgrogp plans, in this figure, I.S noted py else ifi’s offsprings refer to different subgrougisen
dashed-line arrows, while solid-arrows represent various options replace; with anANDnode
for the same group or subgroup. else ifi’s offsprings areagent-planghen
Last, when a subgroup selects some subgroup-plan, the agents replacei with ane-comb node, in which all the agents of this subgroup have

only the pointed plansl® while the other plans0’, and all other agents’ plans

which it consists of may be in one or more agent-plans. Still are all ones
in figure 13, we can see that ti#mpleAdvance plan is con- Zf}d if

ena ror
nected to the agent-plans (noted as borderless n8des¢Goal |, returnT

KickOut and more. That means that the agents of this subgroup

must be in one of those plans. Now, let us demonstrate the algorithm using Figures 13 and 14.

1SIS97 The root is a node which its offsprings are still related to the whole
group (just like the root itself), hence it becomes@Rnode. Then,
%\ the Interrupt and thePlay nodes are nodes which each of
Midfidlders ~ Defenders  Forwards Godies their offsprings are related to a different subgroup. Hence, those
nodes becom@&NDnodes. The nodes in the next led@tfend |,
A A2 A Attack , Midfield , etc. point to other nodes which are related
to the same subgroup. For example, the nadack is related to
Figure 12: Teams (groups) hierarchy. the Forwards group, and so are its offsprin§snpleAdvance

andFlankAttack . Hence, all of those nodes beco@&nodes.
Last, the nodes in the next level e.§impleAdvance point to

agent-plans. Hence, we should replace them with an equivalent
e-comb. For example, the e-conlsimpeadvance has the value
(I of one for the relevant sub-team members (the ‘forwards’, which
P includesA;, A, and Az) only in the plans ofScoreGoal and
| Dd;'d" K A:eck | “"‘M};ﬁsﬂ | KickOut (and possibly for other pointed plans). For each agent

of other teams the e-comb includes ‘all ones’ rows. The rule tree is

presented in figure 14.

[ caefubDefense | [ SmpleAdvance | | Flankattack |
Figure 13: Plans (states) hierarchy. [ n | \n |
Now, we will show a way to translate the hierarchical plan struc- ‘A ‘ A
ture into arule of e-combs (presented in Section 5.1). First, we will [ v [ u [ u |

at last, demonstrate that in our specific example.

When examining the meaning of the plan hierarchy, we conclude
the following understandings. Any plan that is ‘splitted’ to a few
plans which are to be appliezh the same subgroufpepresented Figure 14: Rule tree.
by a solid edge), provides, in fact, a ‘choice node’. That is, the
subgroup must select only one of the splitted plans. In otherwords, 7. ADDING DYNAMICS
this matches th©Roperator. On the other hand, any plan that is Until this point we defined the states in which each agent is found
splitted to a few plans where each of those plans is to applied for a at a given time. A more complex system may define ‘dynamics’
different subgroup (represented by a dashed edge), dictates, in factrules. A movement rule means, that if an agent was in some state
the exact plan in which this subgroup should select, leaving it no s; at timet¢ — 1, it may only be in a predefined subset of states
choices. In other wordsll the splitted nodes must be executed at timet. For example, in the shop system, we may define several
(each by a different sub-team). This matches AND operator. such rules:

present the rationale of the process, then, the actual algorithm, and, 4 \\
A
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Figure 15: States transition matrix.

1. An agent maySeLL only afterNEGOTIATE.

2. An IDLE state will not occur after BREAK; if the agent has
nothing to do, it will continue itBREAK.

3. AnINNERTALK will only appear afteMWATCH, NEGOTIATE,
GUARD or EQuIP, or as a continue of a formérNNERTALK state.
We may define as many a3 binary rules of this kind; from each
state to each state. We can use a matrix to express them. Fo

on the complexity of the rule—how many e-combs are involved
and in what kind of relations, and not on the team size.

This research is novel in that it presents a general and efficient
solution that eases the design of coordination requirements and al-
lows modularity and reuse of already existing systems.

In the future we plan to add partial observation capabilities which
will find the minimum set of agents that will together provide the
complete information, or at least the best possible information.
Combining this with explicit communication among agents may
result in a system that is cheap in resources, yet very reliable. In
addition, in this paper we have presented a dynamic method for the
states transition. But, we have assumed coordination among the
team members is defined at the beginning and must be consistent
along the system lifetime. However, real-world multi-agent sys-
tems are dynamic, and the desired coordination may change, so we
plan to extend our representation and algorithm to dynamic coordi-
nation.
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