
Matrix-Based Representation for Coordination Fault
Detection: A Formal Approach

Meir Kalech, Michael Lindner and Gal A. Kaminka∗
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel

{kalechm, galk}@cs.biu.ac.il, lindnerm@gmail.com

ABSTRACT
Teamwork requires that team members coordinate their actions.
The representation of the coordination is a key requirement since it
influences the complexity and flexibility of reasoning team–members.
One aspect of this requirement is detecting coordination faults as a
result of intermittent failures of sensors, communication failures,
etc. Detection of such failures, based on observations of the behav-
ior of agents, is of prime importance. Though different solutions
have been presented thus far, none has presented a comprehensive
and formal resolution to this problem. This paper presents a formal
approach to representing multi-agent coordination, and multi-agent
observations, using matrix structures. This representation facili-
tates easy representation of coordination requirements, modularity,
flexibility and reuse of existing systems. Based on this represen-
tation we present a novel solution for fault-detection that is both
generic and efficient for large-scale teams.

1. INTRODUCTION
Autonomous agents within multi-agent systems interact and co-

ordinate to achieve their goals [4, 2]. The representation of the
coordination is a key requirement since it may influence the com-
plexity, modularity and the flexibility of reasoning operations of the
team [10, 6].

One aspect of this requirement is detecting coordination faults.
The increased deployment of robotic and agent teams in complex
dynamic settings, has in turn, led to an increasing need for coordi-
nation failure handling [9, 8, 3, 5]. Coordination-failure detection
does not indicate whether the group is achieving its goals but only
if agent-coordination exists. Detection of coordination failures is
essential for a recovery process during which cooperation is rein-
stated (e.g., a negotiations).

The ability to detect failures is affected by the representation of
the coordination. A n̈aive approach, for example, which maintains
and reasons about the whole coordination space is is time consum-
ing and takes up a lot of space. The motivation for this paper is
to find a simple, efficient and modular representation which will
enable to represent the coordination easily.

∗This research was supported in part by BSF grant #2002401.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Previous coordination-failures detection methods have adopted
an approach using a causal-model which describes a pre-defined set
of faults, i.e. a set of forbidden coordination relations [8, 3]. Ob-
viously, this approach is not complete since it does not guarantee
that all the possible failures are pre-defined. Others are only able
to capture specific coordination failures, such as disagreements [7,
6]. The drawbacks of these approaches are caused by the represen-
tation model of the coordination. None of the works have taken a
systematic approach to addressing this challenge. We, on the other
hand, adopt a model-based approach by modeling the normal be-
havior of a team, i.e. the permitted coordination among the agents.

We present an efficient matrix-based approach to represent: (1)
pre-defined coordination and (2) the agents’ states as inferred from
their observed actions. This representation has several benefits.
First, it provides an easy and intuitive way to define the coordi-
nation between teammates. Second, unlike hierarchical structures,
which strictly define relations in the organization, our approach al-
lows flexible and complex relations. For example, under certain
circumstances, it enables the inclusion of an agent in two sub-
groups. Third, since we do not represent the relations between
teammates explicitly, but gather them compactly (joint coordina-
tion in the same matrix structure), this approach is scalable in the
number of agents. Finally, the use of a matrix-based representa-
tion, enables the use of the matrix operations and yields interesting
information about the agents. To summarize, the matrix represen-
tation enables an easy and efficient way to implement functions on
team, like plan recognition, failure detection, diagnosis and other
reasoning operations.

To demonstrate the new representation, we will present a failure-
detection algorithm based on the matrix representation. The algo-
rithm (described in Section 4) uses matrix operations to efficiently
find coordination failures. The algorithm does, in many cases, re-
duce the complexity of detection in large-scale teams from expo-
nential to polynomial.

The paper is organized as follows. Section 2 presents related
work. In section 3, we present our new notation to the coordination-
definition and observation modeling, based on matrices. Section 4
uses this notation to present fault detection algorithm. An exten-
sion of the coordination model for complex systems is presented
in section 5. An implementation of it in hierarchy models is pre-
sented in Section 6. Section 7 extends matrix-based representation
for dynamic systems. At last, section 8 summarizes.

2. RELATED WORK
Horling et al. [3] present a framework for diagnosing failures

in multi-agent systems, based on agent information-sharing, and
a diagnosis causal model. However, this work addresses neither
the scale-up issues, nor the construction of the causal model that

enables it to detect and diagnose failures.
A similar approach has been presented by Klein and Dellarocas

[8] according to which, each agent is paired with a sentinel. Sen-
tinels report agent-activities to a failure-detection system that uti-
lizes a pre-analyzed coordination failure database. In this method,
as the former, the failure-model approach dictates that all possible
failures be analyzed in advance.

Kaminka at al. [7, 1] use a behavior-based approach using a hi-
erarchical model. In a system consisting ofn agents, each with
m possible states, there existO(mn) possible joint states. In this
approach, the designer indicates the ideal state of coordination, by
specifying the desired joint states. The system observes the agents
during run-time, and uses plan-recognition in order to infer their
actual joint state. It then verifies that the actual joint state is indeed
a desired one. Kaminka and Bowling [6] present a scalable method
for such assessment. Unfortunately, their method only enables de-
tection of system failures in cases where the desired joint states are
those of perfect agreement. In addition, their hierarchical repre-
sentation of the coordination restricted the organizational relations
between the agents.

This paper presents a formalization to represent team coordina-
tion based on matrix structures. This representation enables a sys-
tematic approach to detecting coordination failures based on ob-
servation and plan-recognition. It utilizes a model-based approach,
wherein the designer specifies only desired joint states, rather than
an abductive approach which defines all possible states of failure.
Our approach also addresses uncertainty that exists due to ambigu-
ity in plan recognition. We show that we can compactly represent
joint states usingO(nm) matrix order, and thus reduce the poten-
tial O(mn) check to aO(nm) check in many cases.

3. FUNDAMENTAL OBJECTS
This section presents the basic objects used in multi-agent sys-

tems and the relations among them. The most fundamental entities
are theagents. At any moment, each agent is found in a givenstate.
This is a logical, internal representation of the agent status, or be-
lief, at this very moment. Throughout the next sections, we will
refer to the following sets:

(i) Let A be a set ofn agents,{a1, a2, ..., an}.
(ii) Let S be set ofm states,{s1, s2, ..., sm}.
For example, consider a management system for a shop consist-

ing of the following six agents (hereinafter this example will be
referred as ”the shop ”):ANNY the manager,BENNY the cashier,
two sellers —CANNY andDANNY , ERNY the storekeeper and a
guard,FRENNY:

Ashop={ANNY, BENNY, CANNY , DANNY , ERNY, FRENNY}
Agents may be in one of eight possible states:

Sshop={BREAK, IDLE, NEGOTIATE, SELL, INNERTALK , WATCH, GUARD, EQUIP}
Having the two setsA andS, we can define the environment for a
team:

Definition 1 (environment). Let A be a set of agents, and letS be
a set of states. The pairE = 〈A, S〉 is called theenvironmentof A
overS.

Definition 2 (environmental-space).Let E = 〈A, S〉 be an envi-
ronment. The Cartesian productA× S is called theenvironmental
spaceof E, and is denotedE+.

The environmental space is, in fact, the set of all the possible
〈agent, state〉 pairs. Any of these pairs may define a single state
in which an agent is found, as we will describe later. In addition
to pairing each agent to one state, we would like to define a space

which allows each agent to be paired with as many states as needed.
For that purpose, we define the following space:

Definition 3 (environmental-power-space).Let E = 〈A, S〉 be
an environment. The Cartesian productA × (‖S‖) (i.e., A mul-
tiplied by all the subsets ofS) is called theenvironmental-power-
spaceof E, and is denotedE×.

Now that we have the definition of the environment and its asso-
ciated spaces, we can continue with structures on those spaces. We
refer an agent by its state:

Definition 4 (position). Let E = 〈A, S〉 be an environment. A
pair 〈a′, s′〉 ∈ E+ is called apositionoverE.

We could also attribute multiple states to one agent. For example,
in case we are not sure what is the current state of the agent we will
refer that agent superposition:

Definition 5 (superposition). Let E = 〈A, S〉 be an environment.
A pair 〈a′, S′〉 ∈ E× (i.e.,a′ ∈ A andS′ ⊆ S) is called asuper-
positionoverE.

For example, let us refer back to the agents and states pre-
sented in the shop . The pair〈ERNY, GUARD〉 is a position, while
〈ANNY, {INNERTALK , WATCH}〉 is a superposition.

Having each agent found in a particular state defines a unique
coordination among the agents. In order to save the generic nature
of it, we define the coordination as a function.

Definition 6 (coordination). A coordinationfunction over an en-
vironment〈A, S〉 is a function thatpositionseach agent in a partic-
ular state:γ : A → S

For example, in the shop example above, an al-
lowed coordination is {〈ANNY, WATCH〉, 〈BENNY, SELL〉,
〈CANNY , NEGOTIATE〉, 〈DANNY , BREAK〉, 〈ERNY, GUARD〉,
〈FRENNY, INNERTALK 〉}. However, the following coordi-
nation is illegitimate: {〈ANNY, WATCH〉, 〈BENNY, SELL〉,
〈CANNY , NEGOTIATE〉, 〈DANNY , BREAK〉, 〈ERNY, SELL〉,
〈FRENNY, GUARD〉}.

Let A = {a1, a2, . . . , an} be a set of agents andS =
{s1, s2, . . . , sm} be a set of states. We can represent the position
of the agents by a Boolean matrix of ordern×m. This matrix rep-
resents an extended combination of the agents’ positions (e-comb,
for short):

Definition 7 (extended-combination). Let E be the environment
〈A, S〉. An extended-combination(or e-combfor short)C overE
is a Boolean matrix of ordern×m (C ∈ Bn×m) provides:

cij =

{
1 γ(ai) = sj

0 otherwise

While coordination positions each agent in a particular state, we
sometimes need to position each agent in one of a few possible
states (based on Definition 5).

Definition 8 (supercoordination). A supercoordinationfunction
over some environmentE = 〈A, S〉 is a functionΓ : A → ‖S‖
i.e., it positions each agent in asetof possible states. Representing
it by e-comb provides:

cij =

{
1 sj ∈ Γ(ai)

0 otherwise

Figure 1 presents an example for such a function, and Figure 2
presents its appropriate e-comb. The rows represent the agents and
the columns represent the states. This representation allows defin-
ing multiple constraints between the agents in the same structure.

Γ(a) =

{INNERTALK , WATCH} a = ANNY

{BREAK, SELL} a = BENNY{
BREAK, NEGOTIATE,

SELL, EQUIP

}
a ∈ {CANNY , DANNY}

{GUARD} a = ERNY

{BREAK, INNERTALK} a = FRENNY

Figure 1: A supercoordination function.

C
6×8 =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 1 1 0 0
BENNY 1 0 0 1 0 0 0 0
CANNY 1 0 1 1 0 0 0 1
DANNY 1 0 1 1 0 0 0 1
ERNY 0 0 0 0 0 0 1 0
FRENNY 1 0 0 0 1 0 0 0

Figure 2: The e-comb representation of the supercoordination
of Figure 1.

For example, one coordination constraint could be〈ANNY selects
stateINNERTALK while BENNY selectsSELL〉. Another coordi-
nation that is represented by this e-comb is〈ANNY could select
WATCH, while concurrently,BENNY selects stateSELL〉.

A special kind of supercoordination is one that does not assign
any state to at least one of the agents. In other words, a superco-
ordination which assigns at least one agent the empty-set. We call
this an ill supercoordination. In the e-comb it will be represented
by a row of zeros.

Definition 9 (ill–supercoordination). Let Γ be a supercoordina-
tion function over some environmentE = 〈A, S〉. ThenΓ is an
ill–supercoordinationiff ∃ a ∈ A | Γ(a) = ∅. Using the
e-comb representation:∃i, 1 ≤ i ≤ n :

∨m
j=1 cij = 0

The example shown in Figure 1, for instance, is not an ill–
supercoordination, since it positions all agents to non–zero rows
(Figure 2).

At any given moment, each agent is in a givenstate. As a result
of its state, each agent takes someaction, in order to fulfill its goal.
An action is visible, i.e. others might observe it. A state is not
necessarily related to one particular action. Rather, it is possible
that one of a few given actions will be taken at service of the same
state. In the opposite direction, the same action might be taken at
service of a few different states. We will annotate the actions as a
setB = {b1, b2, . . . , b`}.

For example, in the shop we define eight states logical positions
of the agents and nine actions, which the agents might act upon.
StateSELL, for example, is when an agent is busy with closing
the deal with a customer. Positioned at this state, the agent might
act in one of the actionsGET (getting the product off the shelf),
CARRY (carrying it to the customer) orCOUNTER (sitting near the
counter). On the other hand, an agent might alsoCARRY or GET

while positioned at stateEQUIP, and not only when positioned in
SELL.

When designing a multi-agent system, the designer defines
which actions might be taken by an agent when positioned in each
state. This is called thelatitudeof the agent.

Definition 10 (latitude). Let E = 〈A, S〉 be an environment, and
B be a set of actions, thelatitude of agenta ∈ A is a function
λa : S → ‖B‖.

This function maps, for a given agenta ∈ A, each state to a
subset of actions which the agent is allowed to pick while being in

λ(s) =

{ TALK , PHONE, STAND, OTHER} BREAK

{ STAND} IDLE

{ TALK , PHONE} NEGOTIATE

{ GET, CARRY, COUNTER} SELL

{ TALK} INNERTALK

{ STAND, WALK , TALK} WATCH

{ STAND, WALK} GUARD

{WALK , CARRY, PUT, GET} EQUIP

(a) A latitude function

Λ(b) =

{
BREAK, NEGOTIATE,

INNERTALK , WATCH

}
TALK

{ BREAK, NEGOTIATE} PHONE{
BREAK, IDLE,

WATCH, GUARD

}
STAND

{WATCH, GUARD, EQUIP} WALK

{ SELL} COUNTER

{ EQUIP} PUT

{ SELL, EQUIP} GET

{ SELL, EQUIP} CARRY

{ BREAK} OTHER

(b) An interpretation function

Figure 3: A latitude function for the example of the shop , and
its interpretation function.

I
9×8 =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

TALK 1 0 1 0 1 1 0 0
PHONE 1 0 1 0 0 0 0 0
STAND 1 1 0 0 0 1 1 0
WALK 0 0 0 0 0 1 1 1
COUNTER 0 0 0 1 0 0 0 0
PUT 0 0 0 0 0 0 0 1
GET 0 0 0 1 0 0 0 1
CARRY 0 0 0 1 0 0 0 1
OTHER 1 0 0 0 0 0 0 0

Figure 4: The interpretation-matrix for the interpretation
function presented in Figure 3.

this state. The straight-forward inverse function ofλa, the function
λ−1

a , would map subsets ofB to elements inS. While this function
is not interesting, we do define a kind of ‘inverse’ to the latitude
function:

Definition 11 (interpretation). Let E = 〈A, S〉 be an environ-
ment, andB be a set of actions, theinterpretationof agenta ∈ A
is the functionΛa : B → ‖S‖.

Λa of a given actionb, is the set of all states that haveb in their
latitude. Given an action of an agenta′, we interpret its action as
one of a few given states, using this function. Figure 3 presents the
latitude and interpretation functions for the shop example.

Given a set of statesS = {s1, s2, . . . , sm} and a set of actions
B = {b1, b2, . . . , b`}, we can represent the interpretation of the
actions to the states by a Boolean matrix of order`×m.

Definition 12 (interpretation-matrix). Let S be a set of states
andB a set of actions, aninterpretation-matrixI from B to S is a
Boolean matrix of order̀×m (I ∈ B`×m) provides:

iij =

{
1 sj ∈ Λ(bi)

0 otherwise

Figure 4 presents the appropriate interpretation-matrix to the in-
terpretation function presented in Figure 3. The rows represent the
actions and the columns represent the states. For example, the sec-
ond row says that once an agent is observed doingPHONE, then its
state is one of{BREAK, NEGOTIATE}.

Knowing the exact state of each agent at every time requires that
the agent reports its state any time it is changed. This is usually
infeasible, since it involves massive communication resources. Our

Θ6×9 =

TALK PHONE STAND WALK COUNTER PUT GET CARRY OTHER

ANNY 0 0 1 0 0 0 0 0 0
BENNY 0 0 1 0 0 0 0 0 0
CANNY 0 1 0 0 0 0 0 0 0
DANNY 0 0 0 0 0 0 1 0 0
ERNY 0 0 0 0 0 0 0 1 0
FRENNY 0 0 0 1 0 0 0 0 0

Figure 5: An observation matrix.

Ω6×8 = Θ·I =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 1 1 0 0 0 1 1 0
BENNY 1 1 0 0 0 1 1 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 1 0 0 0 1
FRENNY 0 0 0 0 0 1 1 1

Figure 6: The e-comb given by the product between the obser-
vation matrix and the interpretation matrix.

observation-based approach suggests looking at the action of each
agent. Thus the last building block we define is the observation.

Definition 13 (observation). Let A = {a1, a2, . . . , an} be a set
of agents andB = {b1, b2, . . . , b`} a set of actions, anobservation
is a functionω : A → B, that maps each agent to a particular
action.Θ stands for the observation matrix representation:

θij =

{
1 ω(ai) = bj

0 otherwise

Figure 5 presents an example to an observation matrix. The rows
represent the agents and the columns the actions. Pay attention
that in every row there is exactly a single ‘1’ since every agent is
observed in one action.

4. A CASE STUDY — FAULT DETECTION
In the former section we defined a formalism to a matrix–based

representation for team coordination. We defined an extended co-
ordination matrix between the agents’ states (e-comb—Definition
7), an interpretation matrix for inferring the current states of the
agents by their actions (Definition 12) and an observation matrix
which maps between the agents and their current observed actions
(Definition 13). In this Section we will present a case study, fault
detection, in order to show the benefits of such representation.

A coordination fault occurs when the current agents’ positions
(Definition 4) do not match the expected coordination given by the
e-comb (Definition 7). Thus, if we know the current positions of
the agents, we can say for sure whether the system has a fault or
not. The exact state of each agent is known only to the agent itself.
However, its action is observable. By observing its current action,
we can infer the state in which the agent is found. This could be
done using the formula:Ω = Θ ·I (Θ is the observation matrix and
I is the interpretation matrix), whereΩ is ann×m Boolean matrix
(that is, an e-comb). Each elementj in row i represents whether it
is possible that agentai is now in statesj (‘1’ entry) or not (‘0’
entry). Note that each elementωi,j is the sum of multiplying each
elementk in row i of Θ by elementk in column j of I. This
multiplication, of course, is ‘1’ iff both of them are ‘1’. Since each
row in Θ has exactly one element which is ‘1’, the value of each
element inΩ will be at most ‘1’.

For example, figure 6 presents the e-comb given by the product
between the observation matrix (given in Figure 5) and the inter-
pretation matrix (given in Figure 4). Our observation may lead us
to conclude thatCANNY ’s state is eitherBREAK or NEGOTIATE.

R = Ω∧C =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 0 1 0 0
BENNY 1 0 0 0 0 0 0 0
CANNY 1 0 1 0 0 0 0 0
DANNY 0 0 0 1 0 0 0 1
ERNY 0 0 0 0 0 0 0 0
FRENNY 0 0 0 0 0 0 0 0

Figure 7: The e-comb given by boolean ‘and’ operation be-
tween the desired coordinationC and the interpretation e-
combΩ.

We can now explain the failure detection algorithm. Failure is
defined as a situation wherein none of an agent’s possible assigned
state (according toΩ) appears on the ‘allowed coordination’, desig-
nated asC (the desired coordination e-comb). In order to examine
possible matches we will operate a logical ‘and’ betweenC andΩ
in an element-by-element process, to get the results matrix,Rn×m,
ri,j = ci,j ∧ ωi,j . Being a Booleann × m matrix, R itself is in
fact an e-comb.

R represents all the agents-assigned combinations that satisfyC
according to interpreted states by the observation. The combina-
tions represented byR are all those that agentai is found in one of
the statessj that match ‘1’ element in rowRi. Thus, if in each row
i in R there is at least one ‘1’ element, it implies that at least one
combination exists. In this case, we may assume that the agents
will be found in one of those joint states. If, however,R defines
ill–supercoordination (Definition 9), meaning, an all-zero row ex-
ists, then the assigned agents’ states are definitely forbidden. In
this case, a failure alert is warranted. This operation takes only
O(nm) operations (counting the ‘1’s form elements on each of
R’s n rows).

Returning to the shop example, matrixR in Figure 7 is the re-
sult of an element-by-element ‘and’ operation betweenC (Figure
2) andΩ (Figure 6). In this e-comb, the two bottom lines, repre-
sentingERNY andFRENNY, are all-zero. No desired combination
can explain their actions. A failure has been detected.

In order to detect failures by observations only, we define two
policies of decision [7]. Theoptimistic policyassumes that as long
as the system is not proven to be faulty, no fault should be reported.
Using this policy, one can never get a false alarm. If it reports a
fault, then a fault has certainly occurred. The other policy is the
pessimistic policy. This policy reports a fault in the system, unless
it is completely confident that no fault has occurred. Using this
policy, one can never get to a situation of an unreported fault. We
have adopted here an optimistic policy, thus in matrixΩ we inferred
all the possibilities of the states that could be taken by the observed
agents. By generating the result matrix (R) we check if at least one
of the interpreted joint–states of the observed agents is consistent
with the desired coordination.

Sometimes, an agent cannot detect the exact action of one of its
teammates. In this case, we can still provide a partial solution; the
agent may assume that the teammate row is ‘all-ones’ (i.e., its ac-
tion might be any action in the system). Although in this case we
are likely to miss faults, we still keep the property of the optimistic
policy, that is, report no false-alarms. If the system principally al-
lows communication between agents, the agent may better solve
the problem by explicitly communicate agents whose action are not
observable for it.

5. COMPLEX COORDINATION
One e-comb will usually not suffice for a full desired coordina-

tion definition. Thus, the e-comb we introduced earlier (Definition
7), may only partially define the allowed combinations in a desired

coordination. For instance, in the the shop example, assumeERNY

could replaceFRENNY in GUARD duty, the e-comb in Figure 2
does not deal with this new relation. Moreover, we cannot add
another state toC, by just changingc6,7 〈FRENNY, GUARD〉 from
‘0’ to ‘1’. This would allow undesired combinations, such asERNY

andFRENNY guarding simultaneously. Hence, we must provide a
general notation that allows the definition of multiple types of co-
ordination. The idea is to extend the e-comb so that it consists of
more than one e-comb, without becoming exponentially complex.

5.1 E-Combs Operators
The most important operator used to join a few e-combs is the

‘or’, notated as ‘t ’. Defining two sets of coordinationC1 t C2,
means that the set of allowed combinations in the system is the
union of all the combinations defined byC1 and all the combina-
tions defined byC2. As long asΩ satisfies the property of none
ill–supercoordination (Definition 9) witheitherC1 or C2 (or both,
of course), there is no failure. This operator may be extended to
expressions of the kindC1 t C2 t · · · t Cp.

We call this extended structure of combined e-combs using op-
erators arule. Testing an interpretation e-combΩ against a rule
R = C1 t C2 t · · · t Cp is simple. One must perform the ill–
supercoordination test presented earlier for each of thep e-combs.
That is, for eachCk in R, calculating the result matrixRk by log-
ically ‘and’ing Ω with Ck in an element-by-element fashion, and
then check whetherRk is an ill–supercoordination e-comb. Due to
the nature of the operator ‘t ’, it is enough to verify that at least
one suchRk is not an ill–supercoordination e-comb, in order to
conclude that the agents are coordinated. Note that the complexity
of such a simple rule, that involves no other operators than ‘or’, is
O(nmp), wherep is the number of e-combs in the rule.

There may be cases in which the use oft is less efficient, or
more difficult for the designer. Thus, we present the second ba-
sic operator, ‘and’, which is notated by a ‘u ’. The expression
C1 u C2 represents all the combinations that are found in the inter-
section of those that are defined byC1 and those defined byC2. In
other words, the absence of the property of ill–supercoordination
for Ω must hold forboth C1 andC2. In fact, one might notice
that any expression of the formC1 u C2, may be reduced to an
equivalent e-comb, that represents exactly the same set of combi-
nations. This is the e-comb that is the result of a logical-and in an
element-by-element fashion betweenC1 andC2. The complexity
of computing an ‘and’ rule is alsoO(nmp), wherep is the number
of e-combs in the rule.

Let us motivate the ‘and’ operator by an example. Suppose
that our shop, and an additional shop with a set of six agents
A2 = {a7, a8, a9, a10, a11, a12} and the same set of states as in
our shop, are running successfully and we would like the two shops
to cooperate. The basic coordination rules of both shops are left un-
touched. However, now that two managers are available, we add a
constraint saying that one must always supervise the workers, i.e.
at least one of the two managers must be watching (WATCH) at any
given time. Using previous methods, a new model would have been
required. E-combs with only ‘or’ operators might be easier, but will
still require redesigning. This is due to the fact that the current sys-
tem allows the manager to either watch or talk to its employees.
Using the ‘and’ operator substantially simplifies our task.

Suppose that the shops useR1 andR2 as coordination rules,
correspondingly. The first task would be to assemble all agents
into one system. Since we joint the agents in the two shops to a
one big shop, there are now 12 agents. Instead of using e-combs
of order6 × 8 we use12 × 8 e-combs. Then, we must update
definitions from both shops from a6×8 domain to the new unified
one. For this purpose, we expand each e-comb ofR1 with six new

rows, 7 to 12, which are all filled with ‘1’s. This ensures that the
desired coordination of the first shop is left untouched — since all
rows, except for the first six, are defined as ‘all ones’. The same
is done for the second shop rule,R2. In this case, we will expand
the original e-combs in such a way that they will become rows 7 to
12 of the new e-combs, and fill rows 1–6 with ‘all ones’. Now, we
have both shops running on the same system, each with its original
rules. The only thing left is to add the management restriction. This
may be achieved by allowing one of the following cases:

1. When manager 1,ANNY, is watching the shop (WATCH), the
other manager,a7, may either watch (WATCH) or talk with
its employees (INNERTALK),

2. When manager 2,a7, is watching the shop (WATCH), the
other manager,ANNY, may either watch (WATCH) or talk
with its employees (INNERTALK).

This is expressed by two e-combs; the first is

M12×8
1 =

BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

ANNY 0 0 0 0 0 1 0 0
BENNY 1 1 1 1 1 1 1 1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
FRENNY 1 1 1 1 1 1 1 1
a7 0 0 0 0 1 1 0 0
a8 1 1 1 1 1 1 1 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
a12 1 1 1 1 1 1 1 1

.

We buildM2 in a similar way. Then, we define the ‘manager rule’
to beRM = M1 tM2. Finally, we define the rule which merges
the rule of our shop (R1) with the rule of the new shop (R2) and the
joint rule of the managers (RM): Rcooperative= R1 u R2 u RM .

The next section presents an algorithm for calculating this kind
of rules.
5.2 Computing Complex Rules

This section presents the general algorithm that tests a coordi-
nation rule which includes ‘or’ and ‘and’ operators against a given
e-comb interpretation. The algorithm uses atree representationof
the rule. The leaves are the rule’s e-combs, and the inner nodes are
the operators. The algorithm traverses the tree in bottom–up and
unifies e-combs, reducing its depth. The tree’s depth is incremen-
tally reduced until it consists of a simple ‘or’ expression that can
be easily calculated.

The first phase of the algorithm deals with the logical operators
that construct the rule. The tree reduction is accomplished through
images. An image represents, for each node in the tree, the possible
combinations that are defined by the sub-tree whose this node is its
root. The image is, in fact, one or more encapsulated e-combs.
However, an image logically represents one node. In this way, we
work our way up from the leaf nodes. The sub-tree of every node
is replaced with an equivalent image.

The translation of a sub-tree is quite simple. It begins, recur-
sively, from the root and follows depth–first until it reaches a leaf.
On its way back, it replaces each node with an image. The man-
ner in which a node (sub-tree) is translated into an image depends
on the node type. Since the sub-tree replacement is done during
the depth–first backtracking, the node’s offsprings are already guar-
antied translation into images. Let us introduce the types of image:

[E-Combs:] These are in fact the leaves of the tree; each e-comb
node becomes an image which includes only one e-comb.

[‘Or’ nodes:] Each ‘or’ node is replaced by an image that in-
cludes all the e-combs from the node’s image offspring.

[‘And’ nodes:] An ‘and’ node that has a few image offspring
performs according to the distribution law. It becomes an image
that contains all the ‘and’ combinations between e-combs from

each of the offspring. In other words, if a node hask images
offspring, each consisting ofck different e-combs, then it will be
replaced with an image that includes

∏k
i=1 ck e-combs. Each of

those e-combs is built of a different combination ofk e-combs,
which are logically ‘and’ed in an element-by-element fashion.

In order to demonstrate, let us refer to the following rule on some
e-combsC1 to C9:

R = C1 t ((C2 t C3) u (C4 t C5)) t C6 t (C7 u C8 u C9)

Its tree form is represented in Fig. 8. The root has four offsprings,
two of which (the first and the third) are simple e-combs. The right-
most is an ‘and’ node with three simple, e-combs offsprings. The
second one, is an ‘and’ node, with two offsprings, themselves sub-
trees, each consisting of an ‘or’ node and two e-combs offspring.

C1

C7 C9 C8

C3 C2 C5 C4

C6

Figure 8: The Rule Tree forR.

We show how the algorithm reduces the tree, step by step. The
first node is the leftmost node. It is, in fact, just a simple e-comb. It
is therefore replaced by a simple image node that includes exactly
this e-comb.

C7 C9 C8

C6 C1

C2 C3 C4 C5

Figure 9: Rule Tree Reduction – step 1.

C7 C9 C8

C6 C1 C2*4 C2*5 C3*4 C3*5

Figure 10: Rule Tree Reduction – step 2.

In the next stage, the same thing is done to the next leaf (the
e-combC2) and then to its sibling,C3. Later, their parent node
(of type ‘or’) becomes an image that includes both images. The
algorithm then continues the same process on the next sub-tree,
and creates an image consisting of(C4, C5) (Figure 9).

Next, we have an ‘and’ node, with two images offspring, each
of which consists of two e-combs. As we have seen earlier,
the ‘and’ node is replaced by an image that includes all possible
combinations of{C2, C3} and{C4, C5}. These are the combi-
nations(C2 u C4), (C2 u C5), (C3 u C4), (C3 u C5), for short,
C2?4, C2?5, C3?4, C3?5 (Figure 10). As we have already men-
tioned, ‘and’ing e-combs (u) is in fact identical to an element-
by-element ‘and’. Hence, each of the expressionsCx?y is a one

C6 C7*8*9 C1 C2*4 C2*5 C3*4 C3*5

Figure 11: Rule Tree Reduction – step 3.

e-comb. During the next stage, the node ofC6 is replaced by
an image with only this e-comb. Then the rightmost ‘and’ node,
with three offsprings (C7, C8, C9) is replaced with an image of
one e-comb, which is the result of ‘and’ing those three e-combs
— C7?8?9 (Figure 11). At this stage, we reach the root ‘or’ node,
which has four images offsprings.

After reducing the whole tree, we are left with one image. This
image includes multiple e-combs. Thus, in fact, it may be treated
as a collection of e-combs that are all combined by an ‘or’ (‘t ’)
operator. As we noted earlier, a failure is detected if for all of them,
the result of ‘and’ing withΩ provides an e-comb with an all-zero
row.

The complexity of rule-tree reducing cannot be described by a
simple formula, and is highly related to the structure of the rule (it
is out of the scope of this paper). However, this process is done
offline, once, after the rule is defined. Therefore, it does not affect
the complexity of the run-time fault detection algorithm itself. This
complexity is leftO(nmp), wheren is the number of agents,m is
the number of states andp is the number of e-combs in the reduced
tree image. The important property of this complexity is, that for
a given form of rule,p is fixed. Therefore, for a given structure
of rule, the complexity grows linearly in the number of agents and
states in the system — unlike other approaches, which are expo-
nential in the number of agents and states.

6. HIERARCHICAL STRUCTURES
Following the previous section, one of the benefits of using e-

combs is that defining a desired complex coordination becomes
easier. In order to demonstrate that on at least one wide-used sys-
tem structure we will show, in this section, how to represent a hier-
archical structure [10] using the e-combs concept.

We see a few drawbacks in hierarchical representation, which
motivate the using of e-combs representation:

1. Hierarchical representation treats only agreement between
agents, i.e. it enables to represent plans which should be jointly
taken by a sub-team. However, it does not enable more complex
coordination like, for example, concurrence constraints between
agents — two different plans should be operated by two agents
concurrently.

2. Hierarchical representation is limited to a strict structure. It
does not enable, for example, an agent services in two different
sub-teams under some circumstances.

E-combs, however, enable flexible structures with general co-
ordination relations between agents. In addition, while hierarchy
is limited to only representing hierarchical organizations, e-comb
can represent any coordination between teammates including non-
hierarchical organizations like in the shop example.

First, we will briefly define the plan-decomposition hierarchy,
and a team organization hierarchy (these have been fully described
in [12]). A team organization hierarchy is used to represent a mon-
itored agents’ role. All the agents in the system construct agroup.
This group is divided into one or moresubgroups. Thus, for ex-
ample, the group in figure 12 is divided into four subgroups: the
Midfielders, theDefenders, theForwardsand theGoalies. Pay at-
tention, that this is a simplified example, a real system may be fur-

ther divided intosubsubgroupsand so on, where the leaves of the
structure tree are the agents themselves.

A plan-hierarchy is used to represent a monitored agent’s plan.
It is defined to be a directed connected graph, where vertices are
plan steps, and edges signify the hierarchical decomposition of a
plan into sub-plans. Each of those groups and subgroups has a set
of group-plans in which it may be found at any time. For example,
Figure 13, presents a portion of the plan-hierarchy used to moni-
tor the ISIS’97 RoboCup Simulation team [11]. The whole group
always selects the general planWinGame. Two particular plans
are defined for the group, in which it may select when ‘winning
game’ — those arePlay andInterrupt . Each of those is still
a group-plan which is applied to all the agents in the system. Un-
der those plans, each of the subgroups has its own possible plans.
For example, when the system is executing thePlay plan, theFor-
wards’ plan should beAttack , while theGoalies’ plan should be
Defend . Dividing into subgroup plans, in this figure, is noted by
dashed-line arrows, while solid-arrows represent various options
for the same group or subgroup.

Last, when a subgroup selects some subgroup-plan, the agents
which it consists of may be in one or more agent-plans. Still
in figure 13, we can see that theSimpleAdvance plan is con-
nected to the agent-plans (noted as borderless nodes)ScoreGoal ,
KickOut and more. That means that the agents of this subgroup
must be in one of those plans.

ISIS'97

Goalies Forwards Defenders Midfielders

A3 A2 A1

Figure 12: Teams (groups) hierarchy.

WinGame

CarefulDefense

Midfield

Play

Attack

Interrupt

Defend

SimpleAdvance FlankAttack

ScoreGoal KickOut

Figure 13: Plans (states) hierarchy.

Now, we will show a way to translate the hierarchical plan struc-
ture into arule of e-combs (presented in Section 5.1). First, we will
present the rationale of the process, then, the actual algorithm, and,
at last, demonstrate that in our specific example.

When examining the meaning of the plan hierarchy, we conclude
the following understandings. Any plan that is ‘splitted’ to a few
plans which are to be appliedon the same subgroup(represented
by a solid edge), provides, in fact, a ‘choice node’. That is, the
subgroup must select only one of the splitted plans. In other words,
this matches theORoperator. On the other hand, any plan that is
splitted to a few plans where each of those plans is to applied for a
different subgroup (represented by a dashed edge), dictates, in fact,
the exact plan in which this subgroup should select, leaving it no
choices. In other words,all the splitted nodes must be executed
(each by a different sub-team). This matches theANDoperator.

At last, anyagent-plan(noted here as a borderless node) should be
applied to each of the agents in the sub-team that points to this plan.

It is worth to mention, that a subgroup node which points to
agent-plans is in fact equivalent to a more expressed form, which
treats each agent as a one-agent-subgroup. Each of those agents is
allowed to be (in service of the particular subgroup-plan) in one of
the pointed agent-plans. This situation may be defined by a sin-
gle e-comb, in which for all the agents in this subgroup only the
pointed agent-plans are on (‘1’), and for all other agents,all the
plans are on (rows of ‘all ones’—that means ’ don’t care’). The
algorithm itself appears in Algorithm 1.

Algorithm 1 PlansToRule(plans-treeT).
Return a rule of e-combs representing the given plans-tree.

for all nodei in T do
if i’s offsprings refer to the same group asi then

replacei with anORnode
else ifi’s offsprings refer to different subgroupsthen

replacei with anANDnode
else ifi’s offsprings areagent-plansthen

replacei with ane-comb node, in which all the agents of this subgroup have
only the pointed plans ‘1’ while the other plans ‘0’, and all other agents’ plans
are all ones

end if
end for
returnT

Now, let us demonstrate the algorithm using Figures 13 and 14.
The root is a node which its offsprings are still related to the whole
group (just like the root itself), hence it becomes anORnode. Then,
the Interrupt and thePlay nodes are nodes which each of
their offsprings are related to a different subgroup. Hence, those
nodes becomeANDnodes. The nodes in the next levelDefend ,
Attack , Midfield , etc. point to other nodes which are related
to the same subgroup. For example, the nodeAttack is related to
the Forwards group, and so are its offsprings,SimpleAdvance
andFlankAttack . Hence, all of those nodes becomeORnodes.
Last, the nodes in the next level e.g.,SimpleAdvance point to
agent-plans. Hence, we should replace them with an equivalent
e-comb. For example, the e-combCSimpleAdvance has the value
of one for the relevant sub-team members (the ‘forwards’, which
includesA1, A2 andA3) only in the plans ofScoreGoal and
KickOut (and possibly for other pointed plans). For each agent
of other teams the e-comb includes ‘all ones’ rows. The rule tree is
presented in figure 14.

CSimpleAdvance

Figure 14: Rule tree.

7. ADDING DYNAMICS
Until this point we defined the states in which each agent is found

at a given time. A more complex system may define ‘dynamics’
rules. A movement rule means, that if an agent was in some state
sk at time t − 1, it may only be in a predefined subset of states
at timet. For example, in the shop system, we may define several
such rules:

M
8×8 =

from\to BREAK IDLE NEGOTIATE SELL INNERTALK WATCH GUARD EQUIP

BREAK 1 0 1 0 0 1 1 1
IDLE 1 1 1 0 0 1 1 1
NEGOTIATE 1 1 1 1 1 1 1 1
SELL 1 1 1 1 0 1 1 1
INNERTALK 1 1 1 0 1 1 1 1
WATCH 1 1 1 0 1 1 1 1
GUARD 1 1 1 0 1 1 1 1
EQUIP 1 1 1 0 1 1 1 1

Figure 15: States transition matrix.

1. An agent maySELL only afterNEGOTIATE.
2. An IDLE state will not occur after aBREAK; if the agent has

nothing to do, it will continue itsBREAK.
3. An INNERTALK will only appear afterWATCH, NEGOTIATE,

GUARD or EQUIP, or as a continue of a formerINNERTALK state.
We may define as many ass2 binary rules of this kind; from each
state to each state. We can use a matrix to express them. For
example, the above set of rules may be represented by the ma-
trix presented in Figure 15. If an agent is observedTALK , ac-
cording to the interpretation matrix in Figure 4 it should be now
in one of the states{BREAK,NEGOTIATE,INNERTALK ,WATCH}.
However, if we know that its former state was not one of
{NEGOTIATE,INNERTALK ,WATCH,GUARD,EQUIP} (the assigned
states in column five) — we can be sure that the agent is currently
not in INNERTALK state, but in the middle of another state — for
example, aBREAK.

In order to use the states transition matrix, we must always keep
a track of the interpreted agents’ states at timet− 1. Suppose that
the matrix given as the product between the observation matrix at
time t−1 and the interpretation matrix, is the e-combΩt−1 (a kind
of such a matrix is presented in Figure 6). In the same wayΩt

represent the product matrix at timet.
In order to infer the states that the agents could be at timet from

agents’ states at timet − 1 (Ωt−1), we could use the state transi-
tion matrix, by calculatingHt = Ωt−1 ×MT . The multiplication
is done in a way of binary matrix multiplication. Meaning, in the
same way of the usual manner of matrix multiplication, only that
scalar multiplication is replaced with logical ‘and’ and scalar addi-
tion is replaced by logical ‘or’. The e-combHt (pay attention that
its size is stilln ×m) states, for each agent, what are thepossible
states in which it may be now. In other words, it holds all the states
that the agent can move to at timet from the states it has been in
for the timet− 1.

Now we should compareHt with the interpreted states matrixΩt

given by the observation. We compare between them using logical
‘and’ Ft = Ωt ∧ Ht. This ‘and’ing may reduce the hypothesized
states at timet, since if, for example, the state inΩtij = 1 but
Htij = 0 then in the final matrixFtij = 0.

8. SUMMARY AND FUTURE WORK
In this paper we presented a new formal approach to team coor-

dination representation. We defined a new matrix-based notation—
the e-combs—which serves as a general framework for coordina-
tion design and definition in multi agent systems. The e-comb is
a compact way to represent multiple agents’ coordination in one
structure. We showed that the matrix-based structure enables an
easy and intuitive way to define flexible and scalable coordination
between teammates. In addition, this structure enables the using of
the normal operations and attributes of matrices, which yields inter-
esting information on the agents. Based on this representation we
presented an efficient observation-based fault detection algorithm.
The space and time needed for this algorithm are mainly dependent

on the complexity of the rule—how many e-combs are involved
and in what kind of relations, and not on the team size.

This research is novel in that it presents a general and efficient
solution that eases the design of coordination requirements and al-
lows modularity and reuse of already existing systems.

In the future we plan to add partial observation capabilities which
will find the minimum set of agents that will together provide the
complete information, or at least the best possible information.
Combining this with explicit communication among agents may
result in a system that is cheap in resources, yet very reliable. In
addition, in this paper we have presented a dynamic method for the
states transition. But, we have assumed coordination among the
team members is defined at the beginning and must be consistent
along the system lifetime. However, real-world multi-agent sys-
tems are dynamic, and the desired coordination may change, so we
plan to extend our representation and algorithm to dynamic coordi-
nation.

9. REFERENCES
[1] Brett Browning, Gal Kaminka, and Manuela Veloso.

Principled monitoring of distributed agents for detection of
coordination failures. InProceedings of Distributed
Autonomous Robotic Systems 6, pages 319–328.
Springer-Verlag, 2002.

[2] Barbara J. Grosz and Sarit Kraus. Collaborative plans for
complex group actions.Journal of Artificial Intelligence
Research, 86:269–358, 1996.

[3] Bryan Horling, Victor R. Lesser, Regis Vincent, Ana Bazzan,
and Ping Xuan. Diagnosis as an integral part of multi-agent
adaptability. Technical Report CMPSCI Technical Report
1999-03, University of Massachusetts/Amherst, January
1999.

[4] Nicholas R. Jennings. Controlling cooperative problem
solving in industrial multi-agent systems using joint
intentions.Artificial Intelligence Journal, 75(2):195–240,
1995.

[5] Meir Kalech and Gal A. Kaminka. Diagnosis of multi-robot
coordination failures using distributed csp algorithms. In
American Association for Artificial Intelligence (AAAI-06),
2006.

[6] Gal A. Kaminka and Michael Bowling. Robust teams with
many agents. InProceedings of Autonomous Agents and
Multi Agent Systems (AAMAS-02), 2002.

[7] Gal A. Kaminka and Milind Tambe. Robust multi-agent
teams via socially-attentive monitoring.Journal of Artificial
Intelligence Research, 12:105–147, 2000.

[8] Mark Klein and Chris Dellarocas. Exception handling in
agent systems. InProceeding of the Third International
Conference on Autonomous Agents, May 1999.

[9] Lynne E. Parker. ALLIANCE: An architecture for fault
tolerant multirobot cooperation.IEEE Transactions on
Robotics and Automation, 14(2):220–240, April 1998.

[10] Milind Tambe. Towards flexible teamwork.Journal of
Artificial Intelligence Research, 7:83–124, 1997.

[11] Milind Tambe, Gal A. Kaminka, Stacy C. Marsella, Ion
Muslea, and Taylor Raines. Two fielded teams and two
experts: A robocup challenge response from the trenches.
volume 1, pages 276–281, August 1999.

[12] Milind Tambe, David V. Pynadath, Nicholas Chauvat,
Abhimanyu Das, and Gal A. Kaminka. Adaptive agent
integration architectures for heterogeneous team members.
pages 301–308, Boston, MA, 2000.

